

Determination of the Atmospheric Emitted Radiance Interferometer (AERI) Blackbody Emissivity and Radiance Using Multiple Techniques

> Fred Best, Robert Knuteson, Henry Revercomb, Dave Tobin, Jonathan Gero, Joe Taylor - University of Wisconsin, Space Science and Engineering Center

Joe Rice, Leonard Hanssen, Sergey Mekhontsev - NIST

CALCON Logan, Utah 25 August 2009

Topics

- UW-SSEC Blackbody design and heritage.
- Cavity emisisivity determined using traditional approach.
- > NIST TXR measurements of emissivity and radiance.
- UW Heated Halo demonstration (CLARREO)
- NIST CHILR Laser-based Reflectometer measurements.
- NIST AIRI (Advanced Infrared Radiometry and Imaging) measurements of emissivity and radiance.
- Summary comparison of measurements.

Slide 2

SSEC Blackbody Heritage

Slide 3

AERI Blackbody Cavity Characteristics Requirement: ε>0.999, Δε<0.001; ΔT<0.10

AERI blackbody internal cavity cross-section (dimensions in inches)

Slide 4

Traditional Approach

Cavity Emissivity - Traditional Approach

MADISON

Paint Emissivity and Diffusity

Paint Emissivity Measured at Labsphere

Paint diffusity for Aeroglaze Z306 estimated from published values (Persky, Rev. Sci. Instrumentation)

Monte Carlo Results Parameterized Using Cavity Factor, Cf

Cavity Emissivity Parameterized Using C

AERI Blackbody Emissivity and Radiance Measurements CALCON 2009

Slide 8

AERI BB S/N 041 Cavity Emissivity

NIST Thermal-Infrared Transfer Radiometer (TXR)

AERI Blackbody Reflectivity Test Using NIST TXR

NIST Transfer Radiometer (TXR) used to detect reflection from heated tube (up to background +100 °C) surrounding direct FOV

 $M_{txr} = \mathcal{E} \bullet B(T_{bb}) + (1 - \mathcal{E}) \bullet [F \bullet B(T_{tube}) + (1 - F) \bullet B(T_{bg})]$

direct radiance from BB

reflected radiance from BB

AERI BB Reflectance at 10µ (TXR)

TXR Results Summary

AERI Blackbody Reflectance

Measurements confirm estimated emissivity within uncertainty (3-sigma estimates)

*NIST analysis still being conducted

S-HIS / NIST TXR Tests

UW S-HIS & AERI Blackbody Absolute Accuracy: The NIST Connection for SI Traceability

End-to-end radiance evaluations conducted under S-HIS flight-like conditions with NIST transfer sensor (TXR) such that S-HIS satellite validation & AERI observations are traceable to the NIST radiance scale

10 & 5 µm NIST TXR Channels

NIST TXR Validation of S-HIS Radiances NIST TXR Channel 2 (10µm)

 mean difference between TXR & S-HIS = 38 mK, well less than propagated 3-sigma uncertainties

NIST TXR Validation of S-HIS Radiances NIST TXR Channel 1 (5µm)

mean difference between AERI BB & S-HIS = 40 mK

• TXR Ch1 analysis requires refinement at this time

UW-SSEC AERI Blackbody Predicted Radiance Uncertainty

Uncertainty for T_{BB} = 293K, T_{Refl} = 230K

<u>3 σ Uncertainties</u>: $3\sigma T_{BB} = 0.05 \text{ K} 3\sigma T_{Refl} = 5 \text{ K} 3\sigma \epsilon_{BB} = 0.001 \text{ Total (RSS)}$

Heated Halo Using Scanning-HIS A Demonstration For CLARREO

Heated Halo Test Configuration

Emissivity Calculation

Observed radiance

$$R_{\text{obs}} = \varepsilon \bullet B(T_{\text{bb}}) + (1 - \varepsilon) \bullet R_{\text{bg}},$$
$$R_{\text{bg}} = [F \bullet B(T_{\text{halo}}) + (1 - F) \bullet B(T_{\text{room}})]$$

Bias correction with halo out

$$\delta R = R_{\text{AERI model}} - R_{\text{S-HIS}}$$

Emissivity/reflectivity measurement with halo in

$$\overline{1 - \varepsilon(t)} = \frac{\overline{[R_{S-HIS}(t) + \delta R] - B[T_{bb}(t)]}}{R_{bg}(t) - B[T_{bb}(t)]}$$

Heated Halo Preliminary Results

Slide 21

Heated Halo Preliminary Results

Results are sensitive to outof-field stray light contributions

This issue is still being investigated

Slide 22

NIST Complete Hemispherical Laser-based Reflectometer (CHILR)

Cavity Reflectance Measurements w/ Complete Hemispherical Laser-based Reflectometer (CHILR)

Blackbody in Reflectance Setup

AERI Cavity Reflectance Measurements w/Complete Hemispherical Laser-based Reflectometer (CHILR), with 2" aperture -**10.6µ**

3.4e-04

NIS

CHILR Results For AERI BB - 10.6µ

Scan vs. Aperture Size

Viewed Area Dependence

NIST AIRI (Advanced Infrared Radiometry and Imaging)

Blackbody Emissivity Measurements With Two Temperature Background Method

AERI BB Emissivity Measurements with the Variable Background Temperature Method: Experiment Geometry

Rear View of the Measurement Setup

LWIR Pyrometer for Reading Background Temperature AERI BB Under Calibration Circulating Baths For Front and Rear Plate Temperature Control

Front View of the Measurement Setup

Emissivity From Scene Plate Measurements

AERI BB Radiance Temperature

NIST

Emissivity Measurement Comparison Shows Excellent Agreement

Method	ε (5μ)	ε (10μ)	Note
Traditional	0.9991 ±0.00006	0.9991±0.0006	Measured Intrinsic paint emissivity & diffusity with MC ray-trace modeling.
NIST TXR	0.9991±0.0001	0.9995±0.0003	Tests conducted at UW- SSEC.
UW Heated Halo	0.9987±0.0006	0.9981±0.0006	Results thought to be low. Stray light investigation underway at UW.
NIST CHILR	No Measurement	0.9995±0.0002	Test done at NIST using 10.6µ laser.
NISTAIRI	0.9989	0.9989	Uncertainty under investigation at NIST.

Emissivity Measurement Comparison Shows Excellent Agreement

Final Thoughts

- UW is working closely with NIST to refine multiple techniques that will aid in the establishment of SI traceable measurements for NPOESS (using Scanning-HIS). These techniques are also directly applicable for NASA's upcoming CLARREO benchmark mission.
- Preliminary results confirm theoretical expectations for the Wisconsin cavity design within assumed uncertainties.
- Further analysis is underway to establish uncertainty estimates for the new laboratory methods being developed, in part, under the NASA CLARREO IIP.

Slide 36

