

GIFTS Blackbody Subsystem Critical Design Review

University of Wisconsin Space Science and Engineering Center

9 March 2004

GIFTS Blackbody Subsystem CDR Agenda

University of Wisconsin, Space Science and Engineering Center 9 March 2004

8:30	Introduction	Hank Revercomb
8:35	Overview	Fred Best
8:45	GIFTS System Level Calibration Requirements Flowdown GIRD GIFTS Level Calibration Error Budget and Modle	Hank Revercomb
9:00	Top-level Blackbody Requirements Flowdown Blackbody Level Calibration Error Budget Overview of Top Level Blackbody Subsystem Requirements	Fred Best
9:15	Blackbody Controller Controller Performance Requirements and Design Overview Changes Since PDR Controller Operation Electronic Error Budget Power Budget Supporting Analysis Part Selection Engineering Model Test Results Controller Verification Plans Callibration Overview	Scott Ellington
10:25	Break	All
10:40	Blackbody Controller - Digital Interface & Controller Logic Key Requirements Changes Since PDR Detailed Design Supporting Analysis Testing Results Verification Plans Overall Controller Interface Review	Mark Werner
11:30	Blackbody - Mechanical Key Requirements Changes Since PDR Detailed Mechanical Design Mechanical Analysis Mass Budget Verification Plans Interface Review and Alignment Tool	Doug Adler
12:00	Blackbody - Thermal Key Requirements Changes Since PDR Detailed thermal Design Thermal Analysis	Doug Adler

Power Budget Verification Plans Interface Review

12:45	Lunch	All
13:30	Blackbody - Thermistors Thermistor Selection and Packaging Thermistor Test Plan Thermistor Cavity Integration / Heat Sinking Long Term Test Plan	Doug Adler
13:50	Temperature Uncertainty Budget and Calibration Temperature Measurement Error Budget Calibration Plans	Fred Best
14:10	Emissivity Modeling and Uncertainty Budget Monte Carlo Modeling Emissivity Uncertainty Budget	Bob Knuteson
14:30	Development Plans, Logistics, and Facilities Build Plan and Status, Including Spares Performance Verification Plan and Status Contamination Control Assembly, Integration, and Test /Flow Facilities	Fred Best
15:15	Project Plan Status Cost Schedule Procurement Plan and Status Resources Configuration Management Status Product Assurance Plan Safety	Fred Best / Evan Richards
16:00	RFA Status	Fred Best
16:20	Action Item Review	All
17:00	Adjourn	

GIFTS Blackbody Subsystem Critical Design Review Overview

Fred Best 9 March 2004

<GIFTS_BB_CDR_Overview.ppt> 9 March 2004

- Review agenda
- UW SSEC Heritage
- What are we building the big picture
- Program status
- Key changes since PDR

High Speed Photometer

Hubble 1990-93

Net Flux Radiometer

Galileo Entry Probe 7 December 1995

<GIFTS_BB_CDR_Overview.ppt> 9 March 2004 Slide 3

For ASTRO-E & E2 X-Ray Spectrometer

Holds detectors at 0.06 K

<GIFTS_BB_CDR_Overview.ppt> 9 March 2004

YEAR:	66	67	68 69	9 70	71 7	2 73	74	75 7	76 77	78	79 80) 81	82	83 8	4 85	86 8	87 8	8 89	90	91 9	92 9	3 94	1 95	96	97 9	98 99	9 00	01 0	02 03	04
Space Flight Instruments																														_
ATS I Spin Scan Camera																														
ATS III Spin Scan Camera																														
Flat Plate Radiometer - TIROS/ITOS																														
OSO 8 Soft X-Ray Experiment																														
Pioneer Venus Net Flux Radiometer																														
HST High Speed Photometer																														
Space Telescope Axial Replacement																														
Galileo Net Flux Radiometer																														
Diffuse X-Ray Spectrometer																														
Astro E ADR Insert																														
GIFTS Blackbody Subsystem																														
Aircraft Instruments																														
HIS Aircraft Instrument (NASA ER-2)																														
AERI UAV (S-HIS) (NASA DC-8, ER-2)																														
HAWC & SAFIRE, ADR INSERS																										4				
Ground Based Instrumentation																		V												
AFPI	-																													_
WIVN Talascone Control System												_													.1					
Ocean Heat Flux Instrument																														
DIFTS									-																					_
		07		2 70	74 7	0 70	74	75 -	70 77	7 70	70 0/		0.0	00 0	4 05		0 70	0 00	00	04 (0 04		00	07			04 (
	66	0/ 0	00 05	1/0	71 7	Z 73	74	15 1	0///	78	79 80	7 81	82	83 8	4 85	00	57 8	8 89	90	91	92 9	13 94	1 95	96	97	98 98	9 00	01 0	02 03	04

Scanning HIS (High-resolution Interferometer Sounder)

NASA DC-8 & ER2

AERI (Atmospheric Emitted **Radiance Interferometer**)

MADISON

Max Error @ 333 K < 0.055K Max Error @ 303 K < 0.050K Max Error @ 293 K < 0.050K

Miami IR Workshop: 3-4 March 1998

NIST has since procured a MAERI instrument to be used as a Radiance transfer standard

<GIFTS BB CDR Overview.ppt> 9 March 2004

THE UNIVERSITY

MADISON

GIFTS Electro-optical Diagram

GIFTS Sensor Module

MADISON

<GIFTS_BB_CDR_Overview.ppt> 9 March 2004

<GIFTS_BB_CDR_Overview.ppt> 9 March 2004

Engineering Model Testing

Blackbody Cavity

Controller Electronics Engineering Model

<GIFTS_BB_CDR_Overview.ppt> 9 March 2004 Temperature Sensors

Blackbody Overview

<GIFTS_BB_CDR_Overview.ppt> 9 March 2004

Program Status

- Detailed Design Complete
- Controller Board
 - Breadboard fabricated and tested and meets requirements.
 - Engineering Model -1 fabricated & tested and meets requirements.
 - Engineering Model-2 (closely represents flight) fabricated & ready for test.
 - Flight parts ordered.
- Blackbody

<GIFTS BB CDR Overview.ppt>

9 March 2004

- Detailed mechanical and thermal design complete and supported by detailed analysis.
- Engineering Model cavity used for controller testing.

Engineering Model thermistors tested using EM cavity.

- Thermal interface significantly changed:
 - At PDR the surrounding environment was isothermal and at 265 K.
 - Current baseline is that we are mounted to a 200 K bench, with a restriction on heat loss to the bench (< 0.5 W), and with variable baffle temperatures (140 K to 300 K)
 - A survival temperature of 180 K was defined.
- Thermal and mechanical design was modified to accommodate the above.
- Temperature control added to both blackbodies.
- Maximum total power increased from 3.0 to 5.2 W.
- Nominal set point temperature lowered 10 K: HBB is now 290 K, ABB is now 255 K.
- Thermistors were selected to take advantage of SABER program heritage.

GIFTS System Calibration Requirements Flowdown

Hank Revercomb 9 March 2004

GIFTS Overall Absolute Calibration Budget

Subject of BB CDR

Notes: *: @ 220 K Scene Temperature

GIFTS Top-level Absolute Calibration Budget

GIFTS Spectral Calibration Budget

**3-sigma for single sample is 3 ppm-100 sample average assumed

GIFTS Radiometric Calibration Budget (Absolute)

Notes:

*: @ 220 K Scene Temperature

GIFTS Radiometric Calibration Equation: Basis for Uncertainty Modeling

- Radiance *N* derived from raw spectra of Earth (C_E), Space (C_S), and the internal Hot (C_H) and Cold (C_C) Blackbodies
- τ_t is the signal transmission of the telescope mirrors & τ_m is the transmission of the Blackbody pick-off mirror
- B_i is the Radiance from the Hot, Cold, and Space References [eg. $B_H = \varepsilon_H B(T_H) + (1 - \varepsilon_H) B(T_{str})$, where B(T) is the Planck function and Tstr is the effective structure temperature for reflection]

GIFTS Absolute Calibration-Shortwave

GIFTS Calibration Error Sources-LW

Subject of this BB Subsystem CDR: Budget is 0.5 K 3-sigma Absolute & 0.1 K 3-sigma Reproducibility, by analogy

GIFTS Blackbody Subsystem **Critical Design Review** Blackbody Requirements Flowdown Fred Best 9 March 2004

<GIFTS_BB_CDR_BB_Requirem_Flow.ppt> 9 March 2004

- GIFTS Calibration Scheme
- Flowdown of requirements
- Blackbody Error Contributions to GIFTS Calibration
- Overview of Top Level BB Subsystem Specifications

- Two small reference Blackbodies located behind telescope, combined with Space View.
- Blackbody design is scaled from the UW groundbased AERI and NAST / S-HIS aircraft instruments.
- Constraints on original S/C prevented traditional external large aperture blackbody configuration.
- Advantages compared to large external blackbody:
 (1) higher emissivity is practical with small size
 (2) protection from solar forcing.

Slide 3

GIFTS Electro-optical Diagram

GIFTS Sensor Module

9 March 2004

GIFTS Blackbody Absolute Calibration Budget

<GIFTS_BB_CDR_BB_Requirem_Flow.ppt> 9 March 2004 Slide 6

GIFTS Blackbody Reproducibility Calibration Budget

<GIFTS_BB_CDR_BB_Requirem_Flow.ppt> 9 March 2004 Slide 7

		Current Best
	Specification*	Estimate
Ambient Blackbody Nominal Set Point	255 K	255 K
Hot Blackbody Nominal Set Point	290 K	290 K
Temperature Measurement Uncertainty	< 0.1 K (3 sigma)	< 0.074 K (3 sigma)
Ambient Blackbody Emissivity	> 0.996	> 0.998
Hot Blackbody Emissivity	> 0.996	> 0.998
Emissivity Uncertainty	< 0.002	< 0.00072 (3 sigma)
Wavelength	680 - 2,300 cm ⁻¹	680 - 2,300 cm ⁻¹

*Derived From GIRD Using Radiometric Model

		Current Best
	Specification*	Estimate
Source Aperture	2.54 cm	2.54 cm
Source FOV (full angle)	> 10°	>10°
Mass (two blackbodies plus controller board)	< 2.4 kg	< 2.1 kg
Power: average/max	< 2.2/5.2 W	< 2.2/5.2 W
Envelope	< 8 x 8 x 15.5 cm	< 8 x 8 x 15.4 cm

*Imposed by GIFTS Sensor Module Design

MADISON

GIFTS Blackbody Subsystem Critical Design Review Blackbody Controller

9 March 2004

Scott Ellington

sellington@ssec.wisc.edu

608 263-6771

- Performance Requirements and Design Overview
- Changes since PDR
- Controller Operation
- Electronics Error Budget
- Power Budget
- Supporting Analysis
- Part Selection
- Engineering Model Test Results
- Controller Verification Plan
- Calibration Overview

Subsystem Block Diagram

- Blackbody Temperature Measurement
 - Hot Blackbody Range 0 to +40°C
 - Ambient Blackbody Range -40 to 0°C
 - Long-term accuracy ±0.03°C (Electronics only)
 - Measurement Update Rate 2.7 Hz
- Blackbody Temperature Control
 - Constant Temperature and Constant Power Modes
 - HBB Control Temperature Range 0 to +40°C
 - ABB Control Temperature Range -40 to 0°C
 - Set Point Resolution $\leq 0.2^{\circ}$ C
 - Set Point Drift $\leq 0.005^{\circ}$ C, for a Controller board temperature change of 1°C
- Electronics Power 1.2 W, maximum

THE UNIVERSI

MADISON

- Control of both blackbodies
- Maximum total power increases from 3.0 to 5.2 W
- Redundant heater drivers deleted, dual heaters retained
- Add low power "Reset" mode
- Default operation for both blackbodies is constant temperature
- Add autoranging of temperature measurement ranges
- Change $\pm 15V$ supplies to $\pm 12V$
- Add primary overtemperature protection
- Increase measurement update rate from 2.0 to 2.7 Hz
- Command and data interface modified as necessary
- Blackbody thermal environment is colder
- Increase electronics power from 1.0 to 1.2 W
- Change controller operating temperature range to -55 to +50°C. (Accuracy guaranteed -40 to +30°C only)

THE UNIVERS

Blackbody Controller Operation

9 March 2004

THE UNIVERSIT

MADISON

- Blackbody Modes
 - Constant Temperature
 - Constant Power
- Set Points
- Control Thermistor Select
- Temperature Measurement Range
 - Range Select
 - Autorange On/Off
- Reset Mode

Electronics Error Budget Summary

Error Source	Worst-Case Temperature Error (mK)			
	HBB	ABB		
Calibration Networks	0.8	0.8		
Half-Bridge Resistor (R3)	1.0	0.9		
ADC and Amplifiers	10.2	9.6		
Leakage Current	9.2	11.4		
Misc. Errors	1.9	1.9		
Total	23.1	24.6		
Aging and Radiation Component	11.3	11.3		
"At Delivery"	11.8	13.3		

Misc. Errors	mK	Notes
Thermal EMF	0.1	3 Pairs of Cu-Cu junctions, gradient <1°C within pair
Cable Resistance Change	0.5	Assume 100°C change in cable temperature from calibration temperatu
Self-heating Uncertainty	1.3	Assume initial self-heating of 0.5mK and a 25% change in thermistor thermal resistance during mission
Total	1.9	

Notes:

- 1. HBB Range 0 to +40° C
- 2. ABB Range -40 to 0° C
- 3. Electronics temperature range -40 to +30° C
- 4. Calibration at electronics temperature of -5° C only
- 5. All BBC calibration resistor networks VH102K, ±0.5 ppm/°C tracking
- 6. Half-bridge Resistors VH102K, ±1 ppm/°C
- 7. Exclusive of thermistor errors
- 8. Multiplexer and op amp leakage current 10 nA, maximum
- 9. HBB Thermistors 10K at 25° C, ABB Thermistors 2.2K at 25° C
- 10. 7-year long-term drift estimate included
- 11. Initial calibration uncertainty not included

	Current (mA)					Power (mW)					
Load	+2.5V	+3.3V	+5V	+12V	-12V	+2.5V	+3.3V	+5V	+12V	-12V	Total
Electronics	115	0	72	18	21	316	0	380	231	263	1191
ABB Heater	0	0	366	0	0	0	0	1922	0	0	1922
HBB Heater	0	0	366	0	0	0	0	1922	0	0	1922
Total	115	0	804	18	21	316	0	4223	231	263	5034

All values worst case maximum

Steady-State Heater Power

Heater	Set Point (°C)	Pow er (mW
	-40	244
ADD	0	562
	0	562
прр	40	989
Total	(Maximum)	1551

Worst-case for cold side of orbit

0.14 W Blackbody Power Step

Temperature Error

Model Orbital Response

Self-Calibration Example

Self-Calibration Point \diamondsuit

Self-Calibration

Self-calibration corrects for drift of gain and offset in electronics Residual error depends mainly on stability of precision resistors

- N_A = Value at self-calibration point A
- N_B = Value at self-calibration point B
- $V_A =$ Voltage at self-calibration point A (known)
- V_B = Voltage at self-calibration point B (known)
- $K_1 = \text{Gain constant}$
- $K_2 = \text{Offset constant}$
- N = Value at measurement of unknown temperature
- V = Thermistor voltage at unknown temperature
- T = Blackbody Temperature

$$V = \frac{N - K_2}{K_1}$$

$$T = F(V)$$

Controller Parts Selection Summary

Reference	Description	Quantity	Flight	SMD/QPL	Vendor	Package	Notes
		(1)	Part Number	(Flight Only)		(Flight)	
1	Rectifier	2	JANS1N5811US	MIL-PRF-19500/477	Micro-Semi	E-MELF	
2	MPX, 1X16	1	HS9-1840ARH-Q	5962F9563002VYC	Intersil	CDFP3-F28	
3	MPX, 3X2	2	HS9-303RH	5962R9581301VXC	Intersil	CDFP3-F14	
4	MPX, 1X8	1	HS9-508BRH-Q	5962F9674202VXC	Intersil	CDFP4-F16	
5	Op Amp	5	RH108AW		LT	GDFP1-F10	
6	Small Signal Diode	4	JANS1N6661US	MIL-PRF-19500/587	Micro-Semi	A-MELF	
7	Dual Op Amp	13	RH1078MW		LT	GDFP1-F10	
8	Quad Comparator	1	HS9-139RH-Q	5962F9861301VXC	Intersil	CDFP3-F14	
9	D/A Converter	2	7545ARPFS		Maxwell	20 LDFP	
10	A/D Converter	1	7872RPFS		Maxwell	16 LDFP	
11	SMT Resistors	142	RM1005	MIL-PRF-55342/3		RM1005	
12	SMT Ceramic Capacitors	83	CDR05	MIL-C-55681/2		CDR05	
13	Tantalum Capacitors	7	CWR09	MIL-PRF-55365		CWR06 (G)	
14	Power MOSFET	4	IRHNJ579034SCS		IR	SMD-0.5	
15	Tantalum Capacitors	2	CWR09	MIL-PRF-55365		CWR06 (C)	
16	Precision Resistor	21	VH102K		Vishay	VHK102K	(4)
17	Thermistor	1	TBD				(4)
18	FPGA	1	RT54SX72S-1CQ208E	5962-0151504QYC	Actel	208 CQFP	
19	8 Bit Transceiver	8	54ACTQ245WRQMLV	5962R9218701VSA	National	CDFP4-F20	
20	Bus Connector	1	WG208PR9SY-1		AirBorn		
21	3 test points	1	MTMM-103-07-G-S-255		Samtec		
22	SMT Resistors	6	RM2208	MIL-PRF-55342/3	SOA	RM2208	
23	PNP Transistor	5	JANS2N2907AUB	MIL-PRF-19500/291		(SMT)	
24	Quad Nand Gate	2	HCS132KMSR	5962R9572601VXC		CDFP3-F14	
25	26-Pin Connector	2	SDD26F4R200G		Positronix		
26	Zero Ohm Resistor	8	H1005CPX-000		State of the Art, Inc.	RM1005	
27	16 Pin Connector	1	Not used for flight.				(6)
28	Fuse	2	FM08A125V2A	MIL-PRF-23419/8			(4)
29	SMT Ceramic Capacitors	9	CDR01	MIL-C-55681/1		CDR01	
30	SMT Ceramic Capacitors	10	CDR03	MIL-C-55681/1		CDR03	

Notes:

(1) Quantity per board

(4) Through-hole component.

(6) Not used on flight board

GIFTS Blackbody Controller Non-Standard Parts

1 March, 2004

Description	Quantity	Part Number	Vendor	Notes
Op Amp	5	RH108AW	LT	NSPAR not requred
Dual Op Amp	13	RH1078MW	LT	Procured by SDL
D/A Converter	2	7545ARPFS	Maxwell	Procured by SDL
A/D Converter	1	7872RPFS	Maxwell	NSPAR not requred
Power MOSFET	4	IRHNJ579034SCS	IR	NSPAR Submitted by SDL
Precision Resistor	21	VH102K	Vishay	NSPAR Submitted to SDL
3 test points	1	MTMM-103-07-G-S-255	Samtec	NSPAR not requred
Zero Ohm Resistor	8	H1005CPX-000	State of the Art, Inc.	NSPAR not requred

Radiation and Shielding

Total mission radiation dose assumed to be 100K Rad, including X2 safety factor RH108A (Op Amp) requires additional shielding to 20K Rad 7872RPFS (ADC) and HS9-1840 (Mpx) performance improves with additional shielding **110 mils (2.8mm) of additional aluminum shielding is provided for these parts**

TOP SHIELD (MAT''L: 6061-T651 ALUM. ALLOY)

BOTTOM SHIELD (MAT''L: 6061-T6 ALUM. ALLOY)

<GIFTS_BB_CDR_Controller.ppt> 9 March 2004 GIFTS BBC CHIP SHIELD (SCALE: 2/1)

PWB Thermal Analysis

- Neglected radiation, assumed conduction only to edges at 50°C
- Modeled board as single layer with equivalent lateral conductivity based on copper and polyimide layer thicknesses
- Heat flux into board assumed uniform over each component's area
- Total power dissipation is 1.2W
- Components shown total 0.81W, remaining 0.39W evenly distributed over remaining board surface
- Heat to left edge is 0.43W, heat to right edge 0.77W
- Maximum temperature is 54°C

Temperature results

Parts Derating Summary

Component	Parameter	PPL-21 Limit	Worst Case
Ceramic Capacitor	Voltage	60%	52%
Solid Tantalum Capacito	r Voltage	50%	37%
Film Resistor	Voltage	80%	65%
	Power	60%	29%
Analog Microcircuit	Power Dissipation	75%	4%
	Supply Voltage	90%	75%
	Input Voltage	90%	71%
	Junction Temperature	93.5°C	70°C
Digital Microcircuit	Power Dissipation	80%	19%
	Supply Voltage	90%	90%
	Input Voltage	90%	88%
	Output Current	80%	6%
	Junction Temperature	100°C	66°C
Transistor	Power Dissipation	60%	7%
	Current	60%	3%
	CE/DG Voltage	75%	22%
	Gate-Source Voltage	60%	64%
	Junction Temperature	80%	47%
Diode	Inverse Voltage	70%	6%
	Forward Current	50%	7%
	Junction Temperature	80%	37%
Connector	Voltage	25%	5%
Fuse	Current	50%	25%

Note: Maximum PWB temperature 55°C

Engineering Model Test Set-up

9 March 2004

- Tested at +25° C only
 - Data Interface
 - Resistance Measurement
 - Temperature Control
- Preliminary results meet specifications

Engineering Model 1 Photograph

<GIFTS_BB_CDR_Controller.ppt> 9 March 2004

MADISON

Pre-coat Tests

BBC Visual Inspection

Solder joint integrity Solder splashes Component part numbers, polarity

+25_iC Electrical Test (with Blackbody Simulators and EM Blackbodies)

Post Conformal Coat Tests (with Blackbody Simulators and EM Blackbodies)

Vibration

Thermal Cycling

+25¡C Electrical Test

-55¡C Electrical Test

+50¡C Electrical Test

Calibration (with Flight Blackbodies)

-3¡C (tbr) Calibration Cold Calibration (if required) Hot Calibration (if required)

Note: All temperatures refer to Controller board temperature

Electrical Test Outline

Initial Tests

Bus Simulator Safe-to-Mate

BBC Power/Ground isolation measurement

Supply current measurement (heater outputs open)

Reference Voltage Measurement

Logic Array Tests

SDL bus transactions

Test semaphore bit function Read status byte Read remainder of registers Write and read command registers Verify frame count

Temperature Measurement

Resistance Measurement (with blackbody simulators)

Reference Voltage Measurement Channel selection Sampling rate Measurement range versus offset Measurement accuracy and linearity Power supply sensitivity

Auto offset mode (with blackbody simulators)

Verify enable/disable Measure range switching points

Measurement noise (with blackbody simulators and EM blackbodies)

<GIFTS_BB_CDR_Controller.ppt> 9 March 2004

Temperature Controller Tests

Constant Power Mode (with blackbody simulators)

PWM Frequency Measurement Duty cycle versus commanded value Power supply sensitivity Heater voltage and slew rate Overtemperature Test

Constant Temperature Mode (with blackbody simulators and EM blackbodies)

Set point range Redundant control thermistor switching Temperature Stability Power supply sensitivity Dynamic Response Reset and Initialization Single heater operation

Additional Tests

Temperature Error Monitors Board Thermistor Operational supply current measurements Reset mode operation

Flight Test Set-up

- SDL Bus Simulator built with commercial components may not allow testing of Blackbody Controller over entire temperature range.
 - SDL Bus Simulator required for all electrical tests
 - SDL Bus Simulator and Blackbody Controller must be installed on the common motherboard in close proximity
 - Temperature Tests of Blackbody Controller require SDL Bus Simulator to operate over the same temperature range
- Motherboard does not allow direct measurement of Blackbody Controller power supply currents.

- Direct Temperature Calibration Only
- No Temperature to Resistance or Data to Resistance Calibration
 - Would require extremely precise resistance references
 - Intermediate calibration allows accumulation of errors
 - Interchangeability is not an issue
- Acceptance Test Resistance Measurements
 - Verify measurement ranges
 - Linearity

GIFTS Blackbody Subsystem **Critical Design Review** Digital Interface & Controller Logic Mark Werner

9 March 2004

- Interface to SDL Bus
 - Address decode
 - Generate strobes for writes of control parameter registers
 - Generate enables for reads of control parameters, status and data
- Pass Control Parameters from C&DH to Analog Controller
 - Blackbody Set Point Information
 - Mode (Temp/Power)
 - Control Thermistor Selection (1of 2)
 - Offset Values (ABB, HBB, Spare1, Spare2, Spare 3)
- Data Collection
 - Control analog multiplexer (1 of 16 channels)
 - Control offset selection (auto/non-auto mode)
 - Wait for signal to settle
 - Control ADC
 - -Average data (256 samples)

- Control both Blackbodies Redundant control thermistors for each blackbody Delete redundant heaters.
- Primary over temperature protection for constant power mode.
- Add a reset input from the SDL bus.
- Low power reset mode added.
- Auto-ranging of temperature measurement offset voltages.
- Measurement rate change from 2 to 2.7 hertz.
- Registers added for three of the five calibration channels to allow for two calibration data values (offset high/low).

Blackbody Controller Functional Block Diagram

MADISON

9 March 2004

Controller Logic Main Components

- SDL Bus Interface
- Interface to Analog Controller
- Data Collection

SDL Bus Interface

- Address Decode logic
- Registers -- for passing information to/from BBC to C&DH
- Transceiver Direction Control logic

Interface to Analog Controller

- Outputs
 - * Set Point D/A Output bits
 - * Mode Select
 - * Control Thermistor Select
 - * Analog Multiplexor Address bits
 - * Offset Multiplexor Address bits
- Inputs
 - * Over-temperature bits

Data Collection

- Data Collection Control
- Data Averager
 - * Interface to ADC Initiate Conversion & Collect Data
 - * Average Data Samples
- Offset Selector

Read only

<u>Status Information</u> – bytes 0-3 - Two 16 bit registers

<u>Set Point Information</u> – bytes 4-7 - Two 16 bit register – 12 bit DAC

<u>Mode/Auto Register</u> – bytes 8,9

- Mode, Control Thermistor, Auto offset mode

Offset Register – bytes 10,11

- 3 bit offset values for HBB, ABB, Spare 1-3

Data Registers – bytes 12-49

- Averaged Data Samples from ADC – 19 registers

Frame Count – bytes 50,51

- 16 bit Counter Defines Data Set Number

Semaphore Bit – bytes 52,53

- Controls internal access to bus access registers

Digital Interface & Controller Logic – Channel Data Order Definition

Channel	Analog Mux Address (Decimal)	Offset	Description	SDL Bus Byte Address Offset
ABB_A	0	ABB	ABB Thermistor A	12,13
ABB_B	1	ABB	ABB Thermistor B	14,15
ABB_C	2	ABB	ABB Thermistor C	16,17
ABB_D	3	ABB	ABB Thermistor D	18,19
HBB_A	4	HBB	HBB Thermistor A	20,21
HBB_B	5	HBB	HBB Thermistor B	22,23
HBB_C	6	HBB	HBB Thermistor C	24,25
HBB_D	7	HBB	HBB Thermistor D	26,27
ST1	8	ST1	Spare 1	28,29
ST2	9	ST2	Spare 2 (ABB Error)	30,31
ST3	10	ST3	Spare 3 (HBB Error)	32,33
CAL1	11	3	Calibration 1	34,35
CAL2	12	3	Calibration 2 Low	36,37
CAL3	13	2	Calibration 3 Low	38,39
CAL4	14	1	Calibration 4 Low	40,41
CAL5	15	0	Calibration 5	42,43
CAL2	12	2	Calibration 2 High	44,45
CAL3	13	1	Calibration 3 High	46,47
CAL4	14	0	Calibration 4 High	48,49

<GIFTS_BB_CDR_Digital_Interface&Controller_Logic.ppt> 9 March 2004

Digital Interface & Controller Logic – FPGA Top Level Block Diagram

Digital Interface & Controller Logic – Bus Interface Block Diagram

DATAIN[15:0] A2DDATA[15:0] A2DREGEN[15:0] A2DHREGEN[14:12] DRIVEBUS_N UPDATEHOST UPDATEINTEN INCERAMECOUNT DATAOUT[15:0] BESET_N DATAOUT[15 .0 CLK HOSTLOCKED CLK HOSTLOCKED DATAIN[15 + 0] BB1POVERMODE A2DDATA[15 + 0] BB1POVERMODE BB1CTLTHERM BB1CTLTHER A2DREGEN[15:0] OFFSETSUSED[14:0] A2DHREGEN[14:12] BB1SP[11:0] UPDATEHOST BB1SP[11:0 UPDATEOFFSETS UPDATEINTEN BB2POVERMODE INCFRAMECOUNT **BB2POVERMODE** TESTMODE[1:0] BB2CTLTHERI BB2CTLTHERM TESTMODE[1 + 0] ADCTIMEOUT ADCTIMEOUT BB2SP[11:0] BB10VERTEMP_N BB10VERTEMP_N BB2SP[11:0] BB20VERTEMP_N BB20VERTEMP_N AUTORANGE[4:0] OFFSETSUSED[14:0] AUTORANGE[4 . 0] RESET_N DRIVEBUS_N RESET_N UPDATEOFFSETS ADV_N WRMODE_N ADV_N VAMODE_N WRMODE_N WRL_N WRAUTO_N WALLN WRAUTO_N WRAUTO_N OFFSETDATA[15:0] VBH_N REMODEAUTO_N WBH_N RDMODEAUTO_N RDMODEAUTO_N OFFSETDATAL 15:0 RD_N RDSTATUSA_N NEVOFFSETS BD_N RDSTATUSALN RDSTATUSA_N NEWOFFSETS WROFFSETL_N ADDR[20 + 0] **WROFFSETL_N** WROFFSETL_N WROFFSETH_N ADDR[20 + 0] VBOFFSETH N WROFFSETH_N RDOFFSET_N RDOFFSET_N RDOFFSET_N RDSTATUSB_N RDSTATUSB_N RDSTATUSB_N WABB1SETPOINTL_N WRBB1SETPOINTL_N VRBB1SETPOINTL_N WRBB1SETPOINTH_N WRBB1SETPOINTH_N WRBB1SETPOINTH_N RDBB1SETPOINT_N RDBB1SETPOINT_N RDBB1SETPOINT_N WRBB2SETPOINTL_N VR882SETPOINTL_N WRBB2SETPOINTL_N BBCADDRESSED_N WABB2SETPOINTH_N WRBB2SETPOINTH_N WRBB2SETPOINTH_N RDBB2SETPOINT_N RDBB2SETPOINT_N RDBB2SETPOINT_N BODATA NE 15:01 RDDATA_N[15 + 0] RDDATA_N[15+0] RODATAH_N[14 + 12] RDDATAH_N[14:12] RDDATAH_N[14:12 RDFRAMECOUNT_N RDFRAMECOUNT_N RDFRAMECOUNT_N WRSEMAPHOREL_N WRSEMAPHOREL_N WRSEMAPHOREL_N UW Space Science & Engineering RDSEMAPHORE_N BDSEMAPHORE_N RDSEMAPHORE_N Title BBCADDRESSED_N REGBLOCK BBC Bus Interface ADDRDECODE Document Number Size в A Date: 1 March 2004 Sheet 1 of 1

<GIFTS_BB_CDR_Digital_Interface&Controller_Logic.ppt> 9 March 2004 Slide 11

ADDADECODE

Key Points:

- Asynchronous decode
 Phase relationship of SDL Bus control signals to SysClk not well known
- Register specific write pulse
 Used by register block module
 to clock data into register
- Register specific read enable
 Used by register block module
 to enable data to data bus
- DriveBus_N

Used to control transceiver direction

- BBC_Addressed Used to drive READY4#

Key Points:

- Data Storage module
 - * Internal registers
 - * Bus access registers
- Receives control signals from
 * Address Decode module
 * Data Collector module
- Outputs internal register data to Data Collector module
- Outputs internal register bits to analog controller
- Stores data for the Lower Power Reset Mode

Digital Interface & Controller Logic – Register Type Definition

FPGA Bus Interface **Bus Access** Internal Registers Registers Status Registers Set Point Set Point Registers Registers The registers on this side The registers on this side Mode/Auto Mode/Auto are accessed by the Data are accessed by the SDL Collector module. Bus during a bus cycle. Offset Offset Data Data Collection Registers Registers Frame Frame Counter Count Semaphore sync THE UNIVERSITY

MADISON

CLK	AVGGO
AVGBUSY	SETUP
AVGFAIL	AVGDATAVALID
UPDAT	EOFFSETCOUNTERS
	DECCALOFFSET
HOSTLOCKED	CHANNEL[3:0]
	CHOREGEN
	CH1REGEN
	CH2REGEN
	CHBREGEN
	CH4REGEN
	CH5REGEN
	CHEREGEN
	CH7REGEN
	CHBREGEN
	CHSREGEN
	CH10REGEN
	CH11REGEN
	CH12HREGEN
	CH12LREGEN
	CH13HREGEN
	CH13LREGEN
	CH14HREGEN
	CH14LREGEN
	CH15REGEN
AESET_N	INCFRAMECOUNT
UPDA	TEHOSTREGISTERS
UРD	ATEINTREGISTERS
	STATECODEL3'01

DATACOLLECTOTL

Key Points:

- Controls overall data collection timing
- Outputs control signals to Data Averager
- Receives status signals from Data Averager
- Outputs control signals for Register Block
 - * Data Collection Registers write enables
 - * Increment Frame Count Register
 - * Update Bus Access (host) registers
 - * Update Internal registers
- Outputs control signals for Offset Selector
- Outputs Analog Multiplexor address bits
- Synchronous Design

Digital Interface & Controller Logic -- Data Collector Control - State Machine

MADISON

Digital Interface & Controller Logic -- Data Collector Control - Collection Phase

- Key Points:
- Controls ADC interface
- Collects and averages 256 samples from ADC
- Synchronizes ADC data to SysClk
- Checks for proper ADC timeout
- Outputs status information to Data Collector Control module
- Compares averaged data to predefined thresholds
- Outputs control signals to Offset Selector
- Synchronous Design

THE UNIVERSI

MADISON

Digital Interface & Controller Logic -- Data Collector Averager - State Machine

Slide 21

Digital Interface & Controller Logic -- Data Collector Averager - State Machine

Key Points:

- Outputs Offset Multiplexer address bits
- Receives control signals from Data Collector Controller
- Receives control signals from Data Averager
- Uses 2 bit up/down counters for 2 LS bits of offset value
- Outputs Offset values used to Register Block for Status B register
- Synchronous Design

Key Points:

- Provides time delay to ensure no bus contention between FPGA transceivers and SDL bus transceivers
- Outputs Drive Bus External
- Outputs Drive Bus Internal
- Asynchronous Design

General Requirements

• Data Collection Rate Requirement = 1 Hz

Actual = 2.7 Hz

THE UNIVERSIT

MADISON

• Interface to SDL Bus

Met

- Verified data collection design meets BBC specification
 - Functionality
 - Timing
- Verified bus interface design meets SDL Bus requirements
 - Functionality
 - Timing
- Module design documentation
 - Requirements
 - Listing of input and outputs
 - Theory of operation
 - State machine implementation
 - * Method Mealy and/or Moore
 - * Unused states
 - * Reset conditions
 - * State encoding
 - * Homing conditions

- Module design documentation
 - Timing issues
 - * Synchronous or Asynchronous
 - * Clock skew worst case analysis
 - * Worst case timing analysis
 - * Timing diagrams
- Extensive Simulation using development tool (Libero)
 - Worst case simulations for ADC interface
 - * ADC published specifications
 - Worst case simulations for SDL bus transactions
 - * SDL bus specifications
 - * Response to SDL bus control signal glitches
- Worst Case power analysis for FPGA

- Gate output loading analysis
- Interface voltage margins analysis
- Reset condition analysis
- Part safety analysis
 - Input voltage levels
 - Tri-state output overlap
 - Floating input analysis

EM1 Testing

- SDL Bus transactions
 - Writes and Reads of registers
 - Timing for bus write and read
 - Timing of Drive_Bus# signal
- Control Parameters to Analog Controller
 - Verified connections to all components
 - Verified register bits to outputs
 - Verified correct settings for Low Power Reset Mode
 - Verified correct settings for Lab Mode

EM1 Testing (continued)

- Data Collector Functions
 - Verified Data Collector State transitions
 - Verified Data Averager functionality
 - * Timing of ADC sampling
 - * Verify ADC data vs input voltage
 - * Number of ADC samples per channel
 - * Verify data averaging
 - * ADC timeout
 - Verified Offset Selector functionality
 - * Auto Mode
 - * Non-Auto Mode
- Verified Freeze Mode operation
- Verified Power up Reset timing
- Power supply current measurements for +2.5, +5V supplies

- FPGA Design Verification
 - Verify design on BBC EM2 with flight level FPGA
 - Use Actel Silicon Explorer tool to examine signals
 - * Check signals not available on test outputs
 - * Use logic analyzer function to:
 - -- Verify test signal outputs
 - -- Check ADC timing
 - Use digital storage scope to verify timing
 - * SDL bus transactions
 - * ADC timing
- System Verification

Verify system operation at three operating temperatures using **SDL** Bus simulator

Actel Development Tools - Libero V5.0.0.14 * Viewdraw V7.7.0 * Synplify V7.3 * Waveformer Lite V 9.0 * ModelSim V5.7b * Designer V5.0.0.14 -- NetlistViewer -- Pin Editor -- Chip Editor -- Timer - Silicon Explorer V5.0

- Silicon Sculptor V4.38

- Met Key Requirements (see slide 2)
- Completed extensive analysis of design
- Completed extensive testing of design on EM1
- Plans to verify FPGA design in flight level FPGA on EM2

GIFTS Blackbody Subsystem Critical Design Review Blackbody Mechanical Design

Doug Adler

9 March 2004

<GIFTS_BB_CDR_Mech_Thermal.ppt> 9 March 2004

- Envelope: 8 c
- Mass (2 BB's and Controllers):
- Natural frequency >120 Hz
- Strength to withstand launch and vibration loading
 - 50 g design limit load, applied simultaneously in three directions
- Strength to withstand thermal stresses
 - Survival temp of 180 K
 - Operation with max HBB set point, minimum platform temp

- 8 cm dia x 15.4 cm long
 - <2.4 kg

THE UNIVERSI

MADISON

Requirements

- Vibration loading more severe
- Survival temperature defined as 180 K

Design

- Cavity support/insulator changed from G-10 to Noryl
- Base changed from aluminum to Noryl to reduce heat loss
- Enclosure mounted to support tube to reduce heat loss
- Wire lengths increased to reduce heat loss
- Thermistors potted into threaded fittings

THE UNIVERS

- Cavity Approach
 - Cavity shape provides high emissivity
 - Emissivity enhancement due to cavity is well characterized
 - Aluminum cavity walls minimize thermal gradients
 - Geometrically similar to AERI and S-HIS heritage designs
- Cavity insulator/support is 30% glass-filled Noryl
 - Enclosure mounts to support flange to reduce heat loss to base
- Aeroglaze Z-306 Paint
 - Provides high emissivity that is well characterized and stable
 - Straightforward to apply and provides a hardy surface
 - Extensively used in spaceflight environment
- Thermistor Temperature Sensors
 - Very stable at our temperature range
 - Not degraded by radiation environment
 - Easy to couple thermally to blackbody cavity
 - Reasonably rugged.

Blackbody Section View

NASA

Wire Routing

• Dimensions in inches

- Blackbodies will require 6 threaded holes as shown
- This mounting strategy provides +/- 0.015" adjustment for alignment with provisions for maintaining alignment if BB is removed/replaced

BLACKBODY MOUNTING AND ALIGNMENT BUTTONS WILL PROVIDE +/- 0.015 ADJUSTMENT OF APERTURE RELATIVE TO CENTER OF MOUNTING HOLE PATTERN

• Dimensions in inches

- UW will provide SDL a Blackbody Alignment Tool to aid in the optical alignment of the blackbody to the SM Optics Bench.
- The tool closely represents key mechanical dimensions and the overall envelope of the flight blackbody assembly and can thus serve as both a surrogate for alignment and as a fit-check tool.
- The tool will have a translucent target at the position of the blackbody cavity entrance aperture (the perimeter of the aperture will be outlined on the target).
- Images from projections originating at the focal plane can be marked on the translucent target and the tool can be repositioned to center the images within the blackbody aperture outline.
- When the desired alignment has been obtained the alignment buttons that register the Blackbody base flange to the Optics Bench can be positioned and staked.
- The flight blackbodies and the alignment tools are interchangeable when their base flanges are positioned by the alignment buttons, the aperture position of the tool is identical to the aperture position of the flight blackbody.

	Current Estimate	Conti	ngency	Current+ Contingency	Allocation	Ma	rgin
	[g]	[%]	[g]	[g]	[g]	[g]	[%]
ABB	659	15	99	758	1,000	242	24.2
HBB	659	15	99	758	1,000	242	24.2
Controller	500	10	50	550	400	-150	-37.5
	1,818		248	2,066	2,400	334	13.9

Blackbody mass breakdown follows

• Controller mass breakdown in Controller section

GIFTS Blackbody Subsystem comfortably within mass allocation

Blackbody Mass Breakdown

							Unit	Total	
Item#	Part Number	Item	Comment / Manufacturer	Material	Qty	Unit	Mass (g)	Mass (g)	Actual
1	8300-0011	Cavity Barrel		Aluminum, 6061-T6	1	ea	178.0	178.0	х
2	8300-0012	Cavity Cap		Aluminum, 6061-T6	1	ea	35.7	35.7	х
3	8300-0014	Cavity Support Tube		Noryl GFN3	1	ea	51.3	51.3	х
4	8300-0018	Mounting Base		Noryl GFN3	1	ea	59.0	59.0	
5	8300-0016	Enclosure Cylinder		Aluminum, 6061-T6	1	ea	161.1	161.1	
6	8300-0017	Enclosure Front Cover		Aluminum, 6061-T6	1	ea	60.8	60.8	
7		Screw, Skt Hd #2-56x7/16	Blackbody Cap to Cavity	A286 CRES	6	ea	0.35	2.1	х
8		Washer, #2 x .188 OD	Blackbody Cap to Cavity	A286 CRES	6	ea			
9		Insert, Locking #2-56 x 2D	Blackbody Cap to Cavity	Phosphor Bronze	6	ea			
10		Screw, Skt Hd #4-40x1/2	Cavity to Support	A286 CRES	6	ea	0.73	4.4	х
11		Washer, #4 x .25 OD	Cavity to Support	A286 CRES	6	ea			
12		Insert, Locking #4-40 x 2D	Cavity to Support	Phosphor Bronze	6	ea		0.0	х
13		Screw, Skt Hd #4-40x1	Support to Base	A286 CRES	6	ea	0.95	5.7	х
11		Washer, #4 x .25 OD	Support to Base	A286 CRES	12	ea			
14		Nut, Locking Insert #4-40	Support to Base	A286 CRES, Nylon Insert	6	ea			
10		Screw, Skt Hd #4-40x1/2	Support to Mounting Tabs	A286 CRES	6	ea	0.53	3.2	х
11		Washer, #4 x .25 OD	Support to Mounting Tabs	A286 CRES	6	ea			
12		Insert, Locking #4-40 x 2D	Support to Mounting Tabs	Phosphor Bronze	6	ea			
15		Screw, Skt Hd #2-56x1/4	Enclosure Tube to Mounting Tabs	A286 CRES	6	ea	0.53	3.2	х
8		Washer, #2 x .188 OD	Enclosure Tube to Mounting Tabs	A286 CRES	6	ea			
9		Insert, Locking #2-56 x 2D	Enclosure Tube to Mounting Tabs	Phosphor Bronze	6	ea			
15		Screw, Skt Hd #2-56x1/4	Enclosure Tube to Front Cover	A286 CRES	6	ea	0.53	3.2	х
8		Washer, #2 x .188 OD	Enclosure Tube to Front Cover	A286 CRES	6	ea			
9		Insert, Locking #2-56 x 2D	Enclosure Tube to Front Cover	Phosphor Bronze	6	ea			
16		Screw, Skt Hd #8-32x1/2	Mounting Plate Attachment	A286 CRES	4	ea	1.90	7.6	х
17		Washer, #8 x .5 OD	Mounting Plate Attachment	A286 CRES	4	ea			
16		Screw, Skt Hd #8-32x1/2	Mounting Plate Alignment Bushings	A286 CRES	2	ea	1.90	3.8	х
17		Washer, #8 x .5 OD	Mounting Plate Alignment Bushings	A286 CRES	2	ea			

Blackbody Mass Breakdown

							Unit	Total	
Item#	Part Number	Item	Comment / Manufacturer	Material	Qty	Unit	Mass (g)	Mass (g)	Actual
18	HK24279	Heater	Minco HK24279	1.5 in x 6.5 in	1	ea	6.70	6.7	х
		Insulation Film	2 mil	Kapton Polyimide 2 mil	2	ea	0.45	(0.9)	
		Internal Adhesive	1 mil	FEP, 1 mil	2	ea	0.34	(0.7)	
		Mounting Adhesive	Minco #10 2 mil	PSA (3M 966 Acrylic transfer tape) 2 mil	1	ea	0.35	(0.4)	
		Foil		CuNi 70-30	1	ea	0.34	(0.3)	
		Heater lead wire insulation	AWG 26; 4 x 12 in	Teflon	1.22	m	1.10	(1.3)	
		Heater lead wire conductor	AWG 26; 4 x 12 in	Copper	1.22	m	1.38	(1.7)	
19	BM3	Heater Shrink Band	Minco BM3	Mylar Polyester	1	ea	1.00	1.0	х
20	AX-0310001-*	Thermistor, w/ pot, epoxy	Thermometrics		7	ea	1.00	7.0	
	8300-0022	Housing		Aluminum, 7075-T6	7	ea	0.74	(5.2)	
	SP60	Thermistor		Glass/dumet	7	ea			
		Silicone Coating	Emerson & Cuming, encaps. by 2850	E&C Stycast 4952 / CAT 25	7	ea			
		Potting Epoxy	Emerson & Cuming	E&C Stycast 2850 FT / CAT 24 LV	7	ea	0.20	(1.4)	
		Wires, thermistor & ground	AWG 28; 18 x 24 in	Teflon	11	m	0.96	10.6	
		Wires, thermistor & ground	AWG 28; 18 x 24 in	Copper	11	m	0.8	8.7	
21		Epoxy, thermistor wire stakes	Emerson & Cuming	E&C Stycast 2850 FT / CAT 24 LV	14	ea	0.5	7.0	
22		Lubricant, thermistor threads		Molybdenum Disulfide			A/R		
23		Insulation - MLI Blanket		Aluminized Mylar/polyester	1	ea	10.00	10.0	
24	SDD26FR4200G	Electrical Connector	Positronics SDD26FR4200G Male (High-density Sub-D Size 26) Specified by SDL	Copper/brass/gold and polyester	1	ea	8.0	8.0	
		Insulator	MIL-M-24519, RP-1124	Glass-filled polyester	1	ea	2.3	(2.3)	
		Pins		Copper alloy					
		Shell, screws, etc		Brass w/ gold over copper plate					
25		Wire Shielding	Chomerics	Aluminized tape, 1 mil PI, PSA				5.0	
26		Thermal Control Tape	Sheldahl	Aluminized tape, 1 mil PI, PSA				5.0	
27	Z306	Cavity paint	13.6 sq in x 3 mil	Chemglaze Z306, 9924 primer, 9951 thinn	0.669	СС	1.1	0.7	
28		Hardware Staking		3M Scotchweld 2216			A/R	10.0	

NOTE In total mass column values in parentheses are sub-component masses, not included in total.

<GIFTS_BB_CDR_Mech_Thermal.ppt> 9 March 2004

THE UNIVERSITY

MADISON

Blackbody Venting

Blackbody G-loading

- Aluminum CTE 23.6 E-6 /°C, Yield Strength 240 MPa
- Noryl CTE 25 E-6 /°C, assumed +/- 30%, UTS 110 MPa
- Max stresses occur in Noryl at survival temp (180 K)
 - In support tube due to enclosure loading -9 Mpa
 - Assumes solid enclosure attachements
 - At cavity attachment 14 Mpa
 - Assumes no give in bolt, concentrated deflection

Blackbody Natural Frequency

- Modeled with lumped masses at enclosure and cavity cg's
- Lumped mass trusses are point applied, so results are conservative (lower frequency)
- First mode is cantilever beam
- With fixed bolt holes, first mode at 190 Hz
- With pivot restraint, first mode at 145 Hz

THE UNIVERS

PWB Analysis

- PWB board is 10 x 6 in, weight 1.213 lbf (assumed evenly distributed)
- Wedgelocks on short sides, bus connector one long side, 2-26 pin sub-D connectors on other long side
- Assumed short sides fixed or simply supported, long sides simply supported
- E_{eq} =3E6 psi (generic epoxy-glass with copper layers)
- Natural frequency
 - Assuming short sides fixed, long sides SS, natural frequency is 140 Hz
- Stress and displacement calculated using 86.6 G design limit load, same boundary conditions as above
 - Maximum stress in board is 4,000 psi (factor of ten below copper and epoxy-glass yield strengths)
 - Maximum displacement of board y=.066 in
 - General guideline is 0.01 inch per inch of board length (per SDL)
 - On short side this gives a max recommended deflection of 0.060 inches
 - Given conservative assumptions, we expect a more detailed analysis will show deflections are within guidelines

- EM level BB assembly
 - Sine sweep for natural frequency identification
 - Design limit load of 86.6 G (50 G in 3 directions)
 - Quasi-static shaker or static applied at cg
 - Random vibration to acceptance level + 3 dB (8 G_{rms} + 3 dB)
 - Repeat sine sweep to verify no natural frequency shift
 - Thermal cycles 160 K 343 K
- Flight level BB assembly acceptance testing
 - Sine sweep for natural frequency identification
 - Random vibration to acceptance level (8 G_{rms})
 - Repeat sine sweep to verify no natural frequency shift
 - Thermal cycles 170 K 333 K (done as part of thermal balance and cycling test)

GIFTS Blackbody Subsystem Critical Design Review Blackbody Thermal Design

Doug Adler

9 March 2004

- Maximum total power 4W (2 BB)
- Nominal set points: HBB 290K, ABB 255K
- Max power to bench 0.5W (Total, HBB+ABB)
- BB must always be heated (can not be driven above set point by environment)
- Requirements must be met with environment temperatures specified in thermal interface
- Requirements must be met at BB nominal set points, not over entire BB ranges

Slide 20

THE UNIVERS

Requirements

- Thermal interface is significantly more complex (was isothermal 265 K)
 - Mounted to platform/optics bench at 200 K, rising to 220 K end of mission
 - Baffle above blackbodies varies from 140-300 K
 - Mirror mount above blackbodies held at 250 K
 - Instrument survival temperature of 180 K
 - Heat loss through platform limited to 0.5 W total (ABB+HBB)
- Both blackbodies now heated, controlled to 'ambient' and hot temperatures of 255 K and 290 K respectively

Design

- Cavity support/insulator changed from G-10 to Noryl
- Enclosure mounted to support tube to reduce heat loss
- Internal wire length added to reduce heat loss
- Base modified to accommodate thermistor and flanges thickened for strength

Thermal Environment

- Complex reflective surroundings difficult to model accurately
- Conservatively represented by non-reflective cylindrical surroundings

Thermal Interface

- Non-reflective (ϵ =1) cylinder represents baffle, ambient, and platform
- Blackbodies always covered by reflective mirror mount, slide on platform into ۲ center calibration position

Thermal Interface

- Baffle and ambient temps vary from hot to cold each orbit
- Platform and mirror mount temps are stable
- Major BB heat flow paths are radiation to environment and conduction to platform
- Environment temps in K are listed below:

Instrument Mode	Normal – Mission Start		Normal – M	lission End	Survival		
Baffle Condition	Hot	Cold	Hot	Cold	Hot	Cold	
Baffle	300	140	300	140	300	140	
Ambient	280	180	280	180	280	180	
Platform	200	200	220	220	180	180	
Mirror Mount	250	250	250	250	180	180	
Electronics Box	250	240	280	270	223	223	

- MLI emissivity $\varepsilon = 0.01-0.04$, 0.04 used for worst case
- BB surfaces covered with low- ε tape (ε = 0.03-0.05) wherever possible, 0.05 used for worst case
- Wires well coupled to connector (worst case for power loss)
- During calibration flip-in mirror provides cavity aperture view to 60K
- Sliding platform is thermally coupled to optics bench, and can absorb .5W without significant temperature increase
- No heat flow in/out through external wiring harness to electronics box

- TSS model with Monte Carlo radk calculation and approximated conductances
- Network model in ThermXL with analytical view factors or TSS radks
 - Allows quick scenario changes
- Complex 3D conduction modeled with Algor FEA

Thermal Model Results

Old design

- Sensitive to Rep, inner MLI emissivity, material k
- Power to bench too high (.73W)

New design

- Much less sensitive
- Power to bench meets target (.46W)

Thermal Model Results

MADISON

Heat flows (in mW) for HBB, hot baffle, mission start

- Radiation (dashed arrows) out is to surrounds and cavity/enclosure
- Conduction represented by solid arrows

Temps (K) in red boxes

• Worst case for heater power and power to bench is mission start (Platform at 200 K)

Condition	Blackbody	BB Heater Power (W)	Power to Bench (W)	
Hot baffle,	HBB (290 K)	.394	.276	
mission start	ABB (255 K)	.110	.183	
	Total (HBB+ABB)	.504	.459	
Cold baffle,	HBB (290 K)	.626	.244	
mission start	ABB (255 K)	.346	.144	
	Total (HBB+ABB)	.972	.388	

- Absolute gradients not an issue, only uncertainty in gradients
- Lateral gradients (across cavity)
 - Due to ABB and HBB proximity, estimate total gradient ~10 mK
 - Thermistors can be oriented to measure this gradient
 - Need to establish uncertainty and investigate effect of other surrounds
- Axial gradients (along cavity axis)
 - Due to radiation out front and conduction from rear
 - Results in difference between radiance view and thermistor temperatures
 - Estimate worst case 100 mK for gradient between thermistors

• Further analysis will refine the uncertainty in the error budget resulting from lateral and axial gradients

Estimate of cavity heating/cooling; neglects radiation and thermal mass of enclosure and support

- Thermal Resistance (to Platform at 200K), R = 373 K/W•
- Thermal Capacitance (cavity only), C = 188 J/K•
- Time Constant, $\tau = R * C = 19.5 h$ ullet
- Time for BB to heat from 200 K to 290 K, assuming • available power, P = 2 W:
- $t = -\tau * \ln[1-(Th-Ta)/(P*R)] = 2.5 h$
- Heat-up time is 2.5 h

- No EM thermal tests are planned due to design robustness (not very sensitive to variations in emissivity, conductances)
- Flight acceptance test will be thermal vacuum with hot/cold balance and temperature cycling
 - Test is used to validate thermal models, which are then used to verify performance to requirements
- Bench power will be calculated based on validated thermal model, not directly measured
- Test fixture very similar to thermal interface environment, ABB and HBB tested simultaneously
 - HBB under mirror mount aperture with view to cold chamber shroud, ABB under mirror mount
 - Ambient, baffle, and platform temps independently controlled
 - All environment surfaces black except mirror mount
 - No provisions to position BBs during test or represent flip-in mirror transient

BB Thermal Verification Test

BB Thermal Verification Test

- Test Measurements:
 - BB thermistors and heater power
 - Thermocouples applied to BB enclosures and connectors
 - Monitor surroundings, fixture temperatures
- Test Procedure
 - Hot thermal balance
 - Hot baffle, end of life platform temp (220 K)
 - Worst case for ABB overheat
 - Cold thermal balance
 - Cold baffle, mission start platform temp (200 K)
 - Gives worst case heater powers
 - Temperature cycles 12 cycles 170-333 K
 - Repeat hot & cold balance

- More detailed cavity modeling will be done to further refine the uncertainty budget
 - Flip-in transient
 - Cross-cavity gradient
 - Axial gradient

GIFTS Blackbody Subsystem Critical Design Review Thermistors

Doug Adler

9 March 2004

- Selected Thermometrics SP60 thermistors
 - SDL SABER mission heritage
 - Smaller size than YSI
 - Thermometrics measurement accuracy for stability testing
- Drift rated at 0.02% (of nominal 25°C resistance) per year, equates to 5 mK/year
 - Rated at 105°C, less drift at lower temperatures
 - SABER results showed up to 20 mK drift with initial 5 cycles to 77 K,
 < 1 mK drift with additional 5 cycles

- Packaged into threaded aluminum housing
 - Similar mounting to SABER (potting, diameter, etc)
 - Allows stability testing in as-mounted condition
 - Aluminum housing ensures no additional stresses due to thermal cycling after installation in cavity
 - Lead wire joint encased in housing, eliminates risk of solder heat or handling damage affecting stability
 - Conductive epoxy used for thread lubrication, retention, and enhanced conduction to cavity
 - Dual thread-epoxy thermal path provides robustness and stability
 - 7075 chosen for reduced thread galling into 6061 cavity, and increased strength in the event of thermistor removal

- FEA analysis to determine thermistor wire heat leak temperature bias
 - Heat out wire produces ΔT between the thermistor bead and surrounding material
- Considered bounding cases of contact between thermistor housing and cavity
 - Conductive epoxy length L/4, L/2, or L
 - Thread contact vs. none
 - Flange contact vs. 0.005" epoxy under flange

Thermistor Heat Leak Bias

- FEA results based on worst case heat flux out wires of 25 mW per thermistor
 - Assumes cavity at 313 K, baffle/ambient at 140 K, platform at 190 K
 - Assumes leads not staked to cavity (or ineffective stake), as long term stake performance is difficult to verify
 - Assumes wires wrapped in low-ε tape

Case	Thread Contact	Flange Contact	Epoxy Length	Temperature Error (mK)	
1	No	Yes	L/4	14	
2	No	Yes	L/2	8	Assumed for budge
3	No	Yes	L	4	
4	No	Epoxy	L	5	
5	Yes	Yes	None	4	
6	Yes	Yes	L	4	Design intent

- The cavity bores will be filled with conductive epoxy prior to thermistor housing installation, excess will exit through venting slot
- This will ensure performance of Case 2 at a minimum

Thermistor Heat Leak Bias

- FEA results were checked with a test on EM cavity and prototype thermistors
 - Thermistor housings installed with conductive paste
 - Cavity insulated, controlled to temp just above ambient
 - Leads from one thermistor dipped into ice bath
 - If thermistor had no gradient effect, predict 5-10 mK delta from ice dip lead to opposite side of cavity
 - Measured 10-15 mK delta to opposite side, which indicates 5 +/- 5 mK thermistor temperature gradient effect

All flight and backup parts undergo this verification testing

- Normal "ultrastable" thermistor stability screening performed by Thermometrics
- Lead wires attached and probes installed into housings
- Test procedure (based on SDL SABER testing)
 - Ro check
 - Vibration to 50g quasi-static, 8g +3dB random
 - Ro check
 - Thermal cycles 5 cycles 170-333 K (-103 to +60 C)
 - Ro check
 - Thermal cycles 5 cycles 170-333 K (-103 to +60 C)
 - Ro check and three point calibration (-40, 0, 40 C)
- Expect some thermistor drift during first set of thermal cycles based on SDL SABER results
- Second set of thermal cycles verifies no additional drifting

Backup parts will be maintained for long term drift testing

THE UNIVERSIT

MADISON

Backup Slides

Thermistor Error Model

MADISON

Thermal FEA Model

Thermistor Gradient

- FEA analysis to determine thermistor gradient due to heat loss out leads
- Considered bounding cases of contact between thermistor housing and cavity
 - Epoxy Length L/4, L/2, or L
 - Thread contact vs. none
 - Flange contact vs. 0.005" epoxy under flange

Blackbody Thermal Model

PWB Thermal Analysis

- Neglected radiation, conduction only to edges (wedgelocks) at 50°C
- Modeled board as single layer with equivalent lateral conductivity based on copper and polyimide layer thicknesses
- Heat flux into board assumed uniform over each component's area
- Components shown total .81W, remaining .39W evenly distributed over remaining board surface
- Results in max temp of 54°C at 1.2W power dissipation
- Heat to left edge is .43W, heat to right edge .77W

Temperature results

<GIFTS_BB_CDR_Mech_Thermal.ppt> 9 March 2004

PWB Thermal Analysis

Board layout

Temperature results

<GIFTS_BB_CDR_Mech_Thermal.ppt> 9 March 2004

- Neglected radiation, assumed conduction only to edges at 50°C
- Modeled board as single layer with equivalent lateral conductivity based on copper and polyimide layer thicknesses
- Heat flux into board assumed uniform over each component's area
- Total power dissipation is 1.2W
- Components shown total 0.81W, remaining 0.39W evenly distributed over remaining board surface
- Heat to left edge is 0.43W, heat to right edge 0.77W
- Maximum temperature is 54°C

Blackbody Section – Side View

GIFTS Blackbody Subsystem **Critical Design Review Temperature Uncertainty Budget** and Calibration Fred Best 9 March 2004

<GIFTS_T_Uncert&Cal.ppt> 9 March 2004

Temperature Uncertainty	3 sigma error [K]	RSS [K]
Temperature Calibration Standard	0.005	
(Thermometrics SP60 Probe with Hart Scientific 2560 Thermistor Module)		
		0.005

Blackbody Readout Electronics Uncertainty

			_
Readout Ele	ectronics Uncertainty (at deliveřy)	0.014	Ì
			0.014

Blackbody Thermistor Temperature Transfer Uncertainty

Gradient Between Temperature Standard and Cavity Thermistors	0.020	
Calibration Fitting Equation Residual Error	0.005	
		0.021

Cavity Temperature Uniformity Uncertainty

Cavity to Thermistor Gradient Uncertainty/3 of total max expected gradient)	0.030	
Thermistor Wire Heat Leak Temperature Bias Uncertainty	0.008	
Paint Gradient (assumes nominal HBB Temp and conservative viewing geometry)	0.018	
		0.036

Long-term Stability

Blackbody Thermistor(10 years of drift assuming 105 C)	0.050	
Blackbody Controller Readout Electronics	0.012	
		0.051

Effective Radiometric Temperature Weighting Factor Uncertainty

Monte Carlo Ray Trace M	odel Uncertainty in Deter	rmining Teff	0.030	
(1/3 of total max expected gradient)				0.030

*Presented in earlier section

**Based on experience with UW AERI Blackbodies

THE UNIVERSITY

MADISON

Blackbody Section – Side View

Blackbody Temperature Calibration Configuration

Blackbody Temperature Calibration

- The Blackbody and Controller will undergo endto-end calibration.
- The temperature of the Blackbody and Controller can be independently controlled.
- Ambient Blackbody calibrated over the range from: -40 C to 0 C.
- Hot Blackbody calibrated over the range from: 0 C to +40 C.
- For calibration the Controller will be maintained at near 0 C. {The system will be calibrated at other Controller temperatures if a temperature dependence is discovered during EM-2 testing.

Temperature Calibration Standard

GIFTS Blackbody Subsystem Critical Design Review Emissivity Modeling and Uncertainty Budget

09 March 2004

- Emissivity Requirements
- Radiance Model
- Cavity Geometry
- Cavity Paint Application & Emissivty
- Cavity Emissivity Calculations
- Emissivity Error Analysis
- CDR Status

Slide 2

- Emissivity better than 0.996
- Emissivity knowledge: better than 0.002
 - A high absolute cavity emissivity (> 99.6%) reduces the accuracy needed to characterize the temperature of surfaces that are viewed by the blackbody through reflection.
 - The requirement (< 0.2%) on the uncertainty in the knowledge of the cavity emissivity minimizes systematic errors in the on-orbit calibration.

$$\mathbf{R}(\lambda) = \boldsymbol{\varepsilon}(\lambda) * \mathbf{B}(\mathbf{T}_{\text{EFF}}, \lambda) + (1 - \boldsymbol{\varepsilon}(\lambda)) * \mathbf{B}(\mathbf{T}_{\text{ENV}}, \lambda)$$

where,

- B(T, λ)= Planck radiance at T and wavelength λ ,
- ϵ (λ) = cavity isothermal emissivity,

$$\mathbf{T}_{\mathrm{EFF}} = \mathbf{w}_1 * \mathbf{T}_{\mathrm{A}} + \mathbf{w}_2 * \mathbf{T}_{\mathrm{B}}$$

 T_{ENV} = environmental temperature.

$\epsilon, w_1, and w_2$ are pre-computed using a numerical model while T_A , T_B , and T_{ENV} are measured in flight.

Following the theory outlined in Prokhorov (Metrologia, 1998), the effective emissivity of a cavity can be computed using the formula for a diffuse surface:

$$\varepsilon_{\text{eff}}\left(\widetilde{\nu}, T_{\text{ref}}\right) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{m_{i}} \varepsilon_{j} \rho^{j-1}$$

Where N represents the number of rays "shot" into the simulated cavity, m_i is the number of "bounces" within the cavity, and ε and ρ are the directional hemispheric emissivity and the directional hemispheric reflectivity, respectively.

A similar equation can be written for a specular reflector. The Prokhorov model implemented in the program STEEP3 allows for the use of diffusity factor (D=diffuse/total) as a function

The GIFTS blackbody cavity is a relatively simple geometry with rotational symmetry about the central axis.

GIFTS BB Viewing Geometry

<GIFTS_BB_CDR_Emissivity.ppt> 9 March 2004 Slide 7

THE UNIVERSITY

- The GIFTS Blackbody cavities are painted with Aeroglaze Z306 diffuse black paint (applied to a thickness of 0.003").
- Witness samples will be painted at the same time as the cavities in fixtures that simulate the cavity geometry.
- Some of the witness samples will be checked after 24 hours to verify that the desired 3 mils of paint were applied more paint will be applied if necessary.
- After a 7 day full cure at 77 °F and 50% humidity, the witness samples will undergo adhesion tests (tape pull test at edge).

- The cavities and witness samples will then undergo a 3 day thermal vacuum bakeout at 90 C to drive off uncured polymers.
- The cavities will then proceed to mechanical and electrical assembly.
- The witness samples will be sent to NIST for reflectance testing:
 - Directional Hemispheric Reflectivity.
 - Diffusity at limited angles.

Paint Emissivity Measurement

Paint application variation is taken to be < 1% (3 sigma) of the paint emissivity.

Blackbody Paint Witness Sample

Witness Sample Holder "Mimics" **Blackbody Cone Geometry**

MADISON

NIST Measurement of Paint Reflectivity

• NIST measurements of Z306 paint agree with historical Labsphere measurements of UW witness samples to within the NIST measurement accuracy.

• Z306 paint has a directional hemispheric emissivity greater than 0.94 over the GIFTS spectral range.

NIST stated uncertainty for the Z306 paint hemispheric emissivity measurement is < 0.4% (3 sigma)

THE UNIVERSI

MADISON

Paint diffusity for Aeroglaze Z306 estimated from published values (Persky, Rev. Sci. Instrum., 1999).

The numerical model STEEP3 was used to compute the <u>average normal emissivity</u> using diffusity versus incidence angle data from Persky (1999) at three wavelengths*.

Cavity shape leads to a BB emissivity > 0.998 for all wavelengths.

*tracing 1E6 shots per calculation

The Monte Carlo results can be summarized using a "cavity factor" which is a convenient parameterization of the relation between paint and cavity emissivity.

Calculations give a GIFTS BB cavity factor of > 39 for all wavelengths.

	Uncertainty (3 sigma)	Note	for Ep=0.94 f=39	²Ec	²Ec (3 sigma)
Paint Witness Sample Measurement	0.4% Ep	[1]	² Ep=0.0038	(1 <i>/</i> f)*²Ep	0.00010
Paint Application Variation	1.0% Ep	[2]	² Ep=0.0094	(1 <i>/</i> f)*²Ep	0.00024
Long-term Paint Stability	2.0% Ep	[3]	² Ep=0.0188	(1 <i>/</i> f)*²Ep	0.00048
Cavity Factor	30%f	[4]	² f=11.7	(1-Ep)/f^2*²f	0.00046
				RSS	0.00072

Notes:

- [1] Factor of 1.5 times NIST* Stated Accuracy for 2 sigma
- $\left[2\right]$ Worst case difference between 1 and 3 coats
- [3] 2 x above
- [4] Accounts for Cavity Model Uncertainty

* NIST Stated accuracy is 4% of Reflectivity (2 sigma)

f=(1-Ep)/(1-Ec)

f=Cavity Factor Ep=Emissivity of Paint Ec=Emissivity of Cavity

THE UNIVERSITY

MADISON

<GIFTS_BB_CDR_Emissivity.ppt> 9 March 2004

• GIFTS BB <u>cavity emissivity</u> best estimate is verified through Monte Carlo analysis to be higher than the 0.996 requirement. Engineering best estimate is > 0.998.

• GIFTS BB cavity emissivity knowledge <u>uncertainty</u> is verified through analysis to be within the 0.002 requirement. Current engineering best estimate is < 0.001.

• Further refinement of the blackbody emissivity characteristics will continue but under NOAA support of the ground data processing calibration algorithms.

GIFTS Blackbody Subsystem **Critical Design Review Development Plans, Logistics,** and Facilities Fred Best 9 March 2004

<GIFTS_BB_CDR_Devel_Plans.ppt> 9 March 2004

- Build Plan and Status
- Performance Verification Plan and Status
- Contamination Control
- Assembly, Integratin, and Test/Flow
- Facilities

Blackbody Subsystem Build Plan

	Breadboard	EM-1	EM-2	Flight	Flight Spare
Controller	¥ Commercial Parts (inexpensive)	¥ Commercial Parts (inexpensive)	¥ Flight-type parts (not rad-hard	¥ Flight Controller	¥ Spare board will be fabricated
			or screaned)		¥ Spare parts will be kitted
	¥ Verified design concept and	¥ Used to verify electronics design			
	critical circuits		¥ Risk reduction for Flight Board		
		¥ Used to verify board layout			
			¥ Will undergo Random Vibration		
HRR	¥ Rough Mass and Thermal	¥ Closely Simulates Flight		¥ Elight HBB Blackbody	¥ Elight Spare HBB will be
8 NO	Simulator with feedback and	Configuration thermally and		+ Flight HDD Diackoody	fabriated
ABB	measurement thermistor	mechanically			¥ Spare parts will be kitted
					r r r r r r r r r r r r r r r r r r r
		¥ Flight-type thermisors and			
		heater (without screaning and			
		calibration)			
		¥ Used to verify crucial thermal			
		resistances where necessary.			
		¥ Used also for fine-tuning key			
		dynamic parameter			
1					

Verification Matrix

Specification	Typical	Minimum	M aximum	Units	Notes	Verification
HBB Temp. Measurement Range		0	+40	°C	2,*	Test
ABB Temp. Measurement Range		-40	0	°C	2,*	Test
Temp. Measurement Resolution			0.003	°C	2,^	Design/Analysis
Temp. Measurement Error (±)					2,3,7	
Electronics (at delivery)			0.02	iС	*	Test
Thermistor (at delivery)			0.03	С	*	Test
On-orbit drift-electronics			0.01	С	Λ	Design/Analysis
On-orbit drift-thermistor			<u>0.04</u>	С	Λ	Design/Analysis
Total			0.10	С		
HBB Temp. Set Point	+17	0	+40	°C	*	Test
ABB Temp. Set Point	-18	-40	0	°C	*	Test
Temperature Set Point Resolution			0.2	°C	2,^	Design/Analysis
Heater PWM Frequency	10	8	12	Hz	*	Test
Sampling Rate	2.76	2.60	2.90	Hz	٨	Design/Analysis
Data Readout Rate			3	Hz	^	Design/Analysis
Overtemperature Limit		+47	+60	°C	*	Test

Verification, Continued

Specification	Typical	Minimum	M aximum	Units	Notes	Verification
Power						
Heaters (Total)	0.7	0	4.0 ^	W	5,6	Design/Analysis
Electronics Dissipation			<u>1.2 ^</u>	W	4	Design/Analysis
Total			5.2 ^	W		Design/Analysis
Mass						
Hot Blackbody						
Ambient Blackbody						
Controller						
Total			2,400 *	g		Test
Cavity Aperture						
Diameter		2.54	2.57	Cm	*	Test
Field of View		10	14	Deg.	*	Test
Emissivity (680 cm^{-1} to 2,300 cm^{-1})		0.006				
Cavity Emissivity		0.996			^	Design/Test
Cavity Emissivity Uncertainty (3o)		0.002			^	Design/Analysis

Notes

- 1. Unless otherwise noted, all specifications apply over the entire Controller and Blackbody temperature ranges.
- 2. With specified thermistors, over specified temperature measurement range.
- 3. After calibration with flight interconnecting cables, or equivalent.
- 4. Electronics dissipation at maximum heater power, but exclusive of heater power.
- ÒTypicalÓ heater poweis the total for both blackbodies, calculated at the Orbital 5. Average (average of the power to maintain the set point in the worst case cold and worst case hot parts of the orbit), with blackbodies at nominal set points, at the beginning of mission life.
- 6. Maximum heater power occurs during blackbody warm-up.
- Guaranteed for Controller Temperature Range of -40 to +30;C only. 7.

Subsystem-level Test Plans

Contamination Control

- All materials were selected to meet NASA low-ougassing requirements (1% TML, 0.1 CVCM).
- After Painting the BB will be baked out in a vacuum at SDL and returned to UW for completion of assembly and testing.
- Blackbody will be assembled on a Class 1000 laminar flow bench and will be double-bagged.
- Prior to installation of the internal MLI at SDL, the BB will be cleaned with a CO₂ Snow Cleaning process (except for the internal painted cavity surface).
- Following MLI Installation the BB double bagged and purged with dry N2 during any temperature testing.
- The Controller Board will be cleaned at SDL, prior to the Conformal Coating Process.
- After Conformal Coating at SDL, the Board will be stored in ESD bags. (during any temperature tests, it will be purged with dry N2)

THE UNIVERSI

Assembly, Integration, Test Flow

<GIFTS_BB_CDR_Devel_Plans.ppt> 9 March 2004

Facilities-Fabrication & Checkout

SSEC Machine Shop

Blackbody Assembly

Controller Bench-top Checkout

THE UNIVERSIT

Temperature Testing (another identical chamber is available)

<GIFTS_BB_CDR_Devel_Plans.ppt> 9 March 2004

THE UNIVERSIT

MADISON

Temperature Calibration Standard

MADISON

GIFTS Blackbody Subsystem Critical Design Review Project Plan Status

Fred Best & Evan Richards 9 March 2004

<GIFTS_BB_CDR_Project_Plan.ppt> 9 March 2004

• Total Spending through Jan 04:

Cost

- Total of latest Request to SDL:
- Balance to complete program

\$1,430,176 \$1,954,515 \$524,338

Spending by Month on GIFTS BB Project

Time of Projected Delivery Time Funding will be spent

<GIFTS_BB_CDR_Project_Plan.ppt> 9 March 2004

- Updated project schedule shows the following key delivery dates:
 - Blackbody Alignment Tools: 4-28-04
 - Flight Blackbodies and Controller: 7-13-04
- Other key dates
 - Flight parts needed for board assembly: 4-1-04
 - Flight Surrogate Cable for calibration: 5-15-04

	~	5_Schedule.mpp with baseline												
1	AT.	Test Name					Qtr 1, 2004					2tr 2, 2004		
1-1		Task Name Key Program Events	Buration 810 days	Start Wed 12/11/02	Finish Wed 1/18/06	Predecessors	s Jan		Feb	Mar		A	or	May
2		Sources PDR	0 days	Wed 12/11/02	Wed 12/11/02		-							
3		BBC CDR	1 day	Wed 3/10/04	Wed 3/10/04	2.94	_			2/10				
4		Deliver Blackbody Alignment Simulators	0 days	Wed 4/28/04	Wed 4/28/04	29				4				
5		Deliver Flight Blackbodies	0 days	Tue 7/13/04	Tue 7/13/04	110:44	-1 \sim							4/28
6		BB Prototyne Electronics for EMI/EMC	0 days	Thu 4/8/04	Thu 4/8/04	92	-							
7	Far	BB Flight Electronics Delivery	0 days	Tue 7/13/04	Tue 7/13/04	111	-	~				4/8		
8	700000	Integration into SM	23 days	Wed 7/14/04	Eri 8/13/04	7	-	\diamond						
9	0.0	SM Performance Testing	50 days	Mon 8/16/04	Eri 10/22/04	8		和地址的建立						
10	-	SM Accentance Test	54 days	Mon 10/25/04	Thu 1/6/05	0	-							
11	1	GIFTS Engr. Calibration	55 days	Fri 1/7/05	Thu 3/24/05	10	4							
12		SM Integration into CM & Test	115 days	Fri 3/25/05	Thu 9/1/05	10	-							
13		GIFTS Calibration	70 days	Fri 9/2/05	Thu 12/8/05	12	-							
14		Calibration Report Due	0 days	Fri 12/30/05	Eri 12/30/05	12								
15		Launch	0 days	Wed 1/18/06	Wed 1/18/06	13	4							
16	(24.1)	FTS Design Support	500 days	Mon 6/3/02	Fri 4/30/04	15	_							
17		Participate in Interferometer Design	500 days	Mon 6/3/02	Fri 4/30/04									78%
18		GIFTS Characterization and Calibration Support	849 days	Mon 6/3/02	Thu 9/1/05		_							78%
19		Develop & Maintain Calibration Model	552 days	Mon 6/3/02	Tue 7/13/04									
20		Develop and Maintain Radiometric Model	552 days	Mon 6/3/02	Tue 7/13/04									
21	liz.	Help Develop Characterization & Cal. Plan	552 days	Mon 6/3/02	Tue 7/13/04									
22		Participate in Char. & Cal. Proc. Development	271 days	Tue 7/1/03	Tue 7/13/04									
23		Participate in Char. & Cal. Test & Analysis	459 days	Mon 12/1/03	Thu 9/1/05									
24		Participate in GIFTS Engr. Calibration	371 days	Mon 12/1/03	Mon 5/2/05									
25		Participate in Char. & Cal. (SM/CM)	219 days	Mon 11/1/04	Thu 9/1/05									
26		On-board Blackbody Calibration Subsystem	552 days	Mon 6/3/02	Tue 7/13/04									
27		Design BB Alignment Simulators	133 days	Mon 9/29/03	Wed 3/31/04									
28		Fabricate BB Alignment Simulators	15 days	Thu 4/1/04	Wed 4/21/04	27					00	70	how	
29		Verify BB Alignment Simulators	5 days	Thu 4/22/04	Wed 4/28/04	28							0%	001
30	1	Blackbody	552 days	Mon 6/3/02	Tue 7/13/04									0%
31	V	Update Design	65 days	Mon 6/3/02	Fri 8/30/02					7				
32	V	Detailed Mechanical & Thermal Design	462 days	Mon 6/3/02	Tue 3/9/04					100%				
33	V	Mechanical & Thermal Modeling	462 days	Mon 6/3/02	Tue 3/9/04			P CONTRACTOR OF THE		100%				
34	V	Specify Thermistor Sensors & Materials	267 days	Thu 8/1/02	Fri 8/8/03					100%				
35		Procure BB Materials	161 days	Mon 8/11/03	Mon 3/22/04 3	34					195%		_	
36	H	Procure Thermistor Sensors	146 days	Wed 10/1/03	Wed 4/21/04 3	11							80%	
37	~	Fabricate Blackbody Simulators	30 days	Mon 9/2/02	Fri 10/11/02 3	1							T 00 /8	
38	V	Blackbody Simulators complete	0 days	Fri 10/11/02	Fri 10/11/02 3	7								
39		Fabricate Flight Blackbodies	20 days	Tue 3/23/04	Mon 4/19/04 3	2,33,3,34,35							H0%	
40		Paint Flight Blackbodies	10 days	Tue 4/20/04	Mon 5/3/04 3	9,35								-0%
41		Assemble Flight Blackbodies	10 days	Tue 5/4/04	Mon 5/17/04 4	0,36								
42		Functional & Characterization Testing	15 days	Tue 5/18/04	Mon 6/7/04 4	1								
43		BB Calibration	15 days	Tue 6/8/04	Mon 6/28/04 4	2								
44		Support Full System Calibration @ SSEC	10 days	Wed 6/30/04	Tue 7/13/04 4	3,109								
45		BB Controller (Thru EM2 testing)	471 days	Thu 6/20/02	Thu 4/8/04							98%		
46		BB Controller Design	359 days	• That 6/20/02	Tue 11/4/03				-	1		•		•
47	\checkmark	Learn Actel Development Tool	100 days	Mon 9/9/02	Fri 1/24/03			•						
48	~	Finalize design goals and constraints	140 days	Mon 9/23/02	Fri 4/4/03									
49	~	Create design Ver1	109 days	Tue 10/1/02	Fri 2/28/03									
50	\checkmark	Review design Ver1	1 day	Mon 3/3/03	Mon 3/3/03 49	9								
51		Initial Design Complete	0 days	Mon 3/3/03	Mon 3/3/03 50)								
52	\checkmark	Receive VHDL bus address decoder from SDL	1 day	Mon 3/17/03	Mon 3/17/03 51	1								
53	\checkmark	Review VHDL bus address decoder	1 day	Tue 3/18/03	Tue 3/18/03 52	2								
54	~	Simulate bus interface	5 days	Mon 5/5/03	Fri 5/9/03									
55	\checkmark	FPLA Pin Definition	1 day	Mon 4/28/03	Mon 4/28/03									
56	\checkmark	Continue Simulation & any design changes	135 days	Tue 4/29/03	Mon 11/3/03 55	5								
					0-14					^				
Project:	GIFTS	Blackbody Controller	Childar Progress		Split		Baseline		Baseline I	Allestone 🚫		Summa	ry Progress	
		Critical Split	Task		Task Progress	S	Baseline Spli	it	Milestone	•		Summa	ry	
Printed 4	1:19 PM	Mon 3/8/04	~					Page	1 of 2					

				1							
D	0	Task Name	Duration	Start	Finish	Predecessors					
7	\checkmark	Program FPLA for EM model construction	1 day	Tue 11/4/03	Tue 11/4/	03 56	7				1
5	~	FPLA Pins Defined for EM Board Layout	0 days	Mon 7/14/03	Mon 7/14/	03					
59	~	Analog Design	283 days	Thu 6/20/02	Mon 7/21/	03					
60	~	Create analog bread board circuit(s)	30 days	Mon 9/23/02	Fri 11/1/	02					
1	~	Create analog test fixture(s)	7 days	Mon 10/28/02	Tue 11/5/0	02					
2	V	Test analog test fixture	4 days	Wed 11/6/02	Mon 11/11/0	02 61					
3	1	Test bread board circuit(s)	84 days	Tue 10/1/02	Fri 1/24/0	03					
4	1	Initial Analog Design Complete	0 days	Mon 7/21/03	Mon 7/21/0	03 63 59					
35	-	EM1 Board Layout (UTMC)	53 days	Tue 7/22/03	Thu 10/2/0	13 59 58					
6	V	EM Review Board Layout	2 days	Thu 10/2/03	Eri 10/2/0	02 65					
37	Y	EMI Reard Broduction	2 days	Fri: 1/17/02	FII 10/3/0	05 05					
19	¥	Droove EM Porte	208 days	FH 1/17/03	Tue 11/4/0	13					
0	V.	EM DWD Manufacture	1/5 days	Fri 1/17/03	Thu 9/18/0	15					
	×	EM PWB Manufacture	5 days	Mon 10/6/03	Fri 10/10/0	03 66,68					
0	V	EM Board Fabrication	16 days	Mon 10/13/03	Mon 11/3/0	69,68					
	~	Receive EM Board	1 day	Tue 11/4/03	Tue 11/4/0	3 70					
!	\checkmark	EM1 Testing	20 days	Wed 11/5/03	Tue 12/2/0	3 71					
3	\checkmark	Testing	20 days	Wed 11/5/03	Tue 12/2/0	3 71,80,57					
ł	\checkmark	Test with Blackbody Simulators	8 days	Mon 11/17/03	Wed 11/26/0	3 38					
5	~	Complete EM1 Testing	0 days	Tue 12/2/03	Tue 12/2/0	3 73					
6	V	Test Fixture for EM & Flight bds. Using SDL bus simulator	28 days	Wed 9/17/03	Fri 10/24/0	3					
	V	Test Fixture Familarization at SDL	2 days	Wed 9/17/03	Thu 9/18/0	3					
-	V	Test Fixture Test Procedure Development	15 days	Fri-9/26/03	Thu 10/16/0	3					
-	1	Test Fixture Software Coding	6 days	Fri 10/17/03	Fri 10/24/0	3 78					
-	1	Test Fixture Preparation Completed	0 days	Fri 10/24/03	Fri 10/24/0	3 79					
-	×	Engineering Model 2	20 days	Tuo 12/2/03	F-1 1/0/0	3 /3	1000/				
_	Y	Schematic Changes	29 days	Tue 12/2/03	FIT 1/9/04	4	100%				
_	Y	EM2 Board Lavout	4 days	Tue 12/2/03	FE 12/5/0	100					
-	*	Daviay EM2 Board Levent	23 days	Mon 12/8/03	Wed 1/7/04	4 82	100%				
-	*	EM2 Boord Brod	2 days	Thu 1/8/04	Fn 1/9/04	4 83	100%				
_	V	EM2 Board Production	29 days	Wed 1/14/04	Mon 2/23/04	4	¥		100%		
	~	EM2 PWB Manufacture	5 days	Wed 1/14/04	Tue 1/20/04	4 84	100%				
	~	EM2Board Fabrication	20 days	Mon 1/26/04	Fri 2/20/04	4 86		100%			
	\checkmark	Receive EM2 Board	1 day	Mon 2/23/04	Mon 2/23/04	4 87		1 −10	0%		
		EM2 Testing	22 days	Wed 3/10/04	Thu 4/8/04	4					09
		Testing	20 days	Wed 3/10/04	Tue 4/6/04	4 88,94			Ĭ		0%
		Review EM Tests	2 days	Wed 4/7/04	Thu 4/8/04	4 90			IT		0%
		Complete EM2 Testing	0 days	Thu 4/8/04	Thu 4/8/04	91					4/1
	\checkmark	CDR Preparation	15 days	Wed 2/18/04	Tue 3/9/04				1	00%	
	~	Prepare materials for CDR	15 days	Wed 2/18/04	Tue 3/9/04				100	1%	
		BBC Flight Board (Flight)	552 days	Mon 6/3/02	Tue 7/13/04	-				_	
-		Board Layout changes for flight board	5 days	Fri 4/9/04	Thu 4/15/04	92					
-		Review Flight board layout	3 days	Fri 4/16/04	Tue 4/20/04	96					
+		Flight Parts	494 days	Mon 6/3/02	Thu 4/22/04			_			
-	1	Flight Parts Definition	295 dave	Mon 6/3/02	Fri 7/18/02	<u> </u>					
+		Flight Parts Procurement	101 days	Mon 7/21/02	Mon 4/12/04	00					
+	55525 55575	Flight Parts to LITMC for kit audit	5 days	Er: 4/16/04	The 4/02/04	100.2.07					V ^t
-	(ff.f	Flight Board Brogenerat	5 days	rn 4/16/04	1 hu 4/22/04	100,3,96		100000			
		riigii board riocurement	25 days	••••••ed 4/21/04	Tue 5/25/04						
		Flight Board PWB Manufacture	5 days	Wed 4/21704	Tue 4/27/04	97,3	•				
		Flight Board Fabrication	20 days	Wed 4/28/04	Tue 5/25/04	103,101					
		Receive Flight Boards	0 days	Tue 5/25/04	Tue 5/25/04	104					
T		Flight Board Testing	35 days	Wed 5/26/04	Tue 7/13/04						
T	11	Initial Flight Boards Test	5 days	Wed 5/26/04	Tue 6/1/04	105					
1	21 .	Functional Testing	10 days	Wed 6/2/04	Tue 6/15/04	107					
1		Thermal Testing	10 days	Wed 6/16/04	Tue 6/29/04	108,107					
+		Calibration w/ Flight BB	10 days	Wed 6/30/04	Tue 7/13/04	109					
-		Completion of Flight Bd. Testing	0 days	Tue 7/13/04	Tue 7/13/04	110					
			5 days		140 //15/04				******		
		Critical	cal Progress		Split		Baseline		Baseline Milest	one 🔿	Su
4	ILTO T	a al da a da constructione								\checkmark	00
t: G	IFTS BI	ackbody Controller Critical Split Task	c c		Took Broom	1966 B	Baseline Calif		Milartan	A	

- UTMC Aeroflex will get the Controller Board fabricated (Coretec) and will assemble using UW provided parts.
- Board fabrication vendor may be the same one used for EM-1 and EM-2, or we may go with the same vendor as SDL if it is different.
- Thermometrics is providing the S-60 thermistors in UW provided housings.
- Electronics Parts status provided on next page.

Flight Parts Status

Ref	Quant.	Description	Flight	SMD/QPL	Flight	Part	Vendor	Notes	Purchase
	(1)	·	Part Number		Footprint	Mfg			Responsibility
1	2	Rectifier	1N5811US	none	E-MELF	Micro-Semi	NA		SDL
2	1	MPX, 1X16	HS9-1840ARH-Q	5962F9563002VYC	CDFP3-F28	Intersil	NA		SDL
3	2	MPX, 3X2	HS9-303RH	5962R9581301VXC	CDFP3-F14	Intersil	NA		SDL
4	1	MPX, 1X8	HS9-508BRH-Q	5962F9674202VXC	CDFP4-F16	Intersil	Arrow		UW
5	5	Op Amp	RH108AW	none	GDFP1-F10	Lin. Tech	Arrow		UW
6	4	Small Signal Diode	1N6661US	none	A-MELF	Micro-Semi	NA		SDL
7	13	Dual Op Amp	RH1078MW	none	GDFP1-F10	Lin. Tech	NA		SDL
8	2	Quad Comparator	HS9-139RH-Q	5962F9861301VXC	CDFP3-F14	Intersil	Arrow		UW
9	2	D/A Converter	7545ARPFS	none	CDFP4-F20	Maxwell	NA		SDL
10	1	A/D Converter	7872RPFS	none	CDFP4-F16	Maxwell	Maxwell		UW
11	153	SMT Resistors	RM1005	MIL-PRF-55342/3	RM1005	State of the Art	State of the Art		UW
12	82	SMT Ceramic Capacitors	CDR05	MIL-PRF-55681E	CDR05	AVX	Spirit		UW
13	7	Tantalum Capacitors	CWR09 (G)	MIL-C-55365/4	CWR09 (G)	AVX	Spirit		UW
14	4	Power MOSFET	IRHNJ597034SCS	none	SMD-0.5	IR	ACI Electronics	60V, P channel, 100 K rads	UW
15	2	CWR06	CWR09 (C)	MIL-C-55365/4	CWR09 (C)	AVX	Spirit		UW
16	21	Precision Resistor	VH102K	none	VHK102K (4)	Vishay	Vishay		UW
17	1	Board Thermistor	tbd	none	RN55 (4)	tbd	tbd		UW
18	1	FPLA	RT54SX72S-1CQ208B	5962-0150802QYC	208 CQFP	Actel	Actel		SDL
19	7	8 Bit Transceiver	54ACTQ245WRQMLV	5962R9218701VSA	CDFP4-F20	National	Avnet Marshall		SDL
20	1	Bus Connector	WG208PR9SY-1	none	(2)	AirBorn	Airborn		SDL
21	1	3 test points	MTMM-103-07-G-S-255	none	(2)	Samtec	Samtec		UW
22	7	SMT Resistors	RM2208	none	RM2208	State of the Art	State of the Art		UW
23	5	PNP Transistor	SOC2907AHRB	MIL-PRF-19500/291	(SMT)	ST Micro	NA		SDL
24	2	Quad Nand Gate	HCS132KMSR	5962R9572601VXC	CDFP3-F14	Intersil	Arrow		UW
25	2	26-Pin Connector	SDD26F4R200G	none	(2)	Positronix	Positronics		UW
26	8	Zero Ohm Resistor	RM1005	none	RM1005	State of the Art	State of the Art		UW
27	1	16 Pin Connector	Not used for flight.	none	(2)	NA	NA		NA
28	2	Fuse	FM08A125V2A	none	(2)	Bussman Fuse	Fuses Ulimited		UW
29	9	CDR01	CDR01	MIL-PRF-55681E	CDR01	AVX	Spirit		UW
30	11	CDR03	CDR03	MIL-PRF-55681E	CDR03	AVX	Spirit		UW
31	6*	Blackbody Thermistor, ABB	AX-0310001-7	NA	NA	Thermometrics	Thermometrics		UW
32	6*	Blackbody Thermistor, HBB	AX-0310001-5	NA	NA	Thermometrics	Thermometrics		UW
33	4**	Heater for BB	HK25076(-)	NA	NA	Minco	Minco		UW
Notes:	:								
(1) Q	uantity p	er board							
(2) Th	rough-h	ole component.							
* Blac	kbody T	hermistors are mounted in the	Blackbodies (6 per blackb	ody)					
** 2 heaters per Blackbody									

All UW parts on hand except #17, #13 - expect in time for board assembly

Resources

• <u>Blackbody</u>

- UW has all resources necessary to fabricate and assemble the blackbody.
- SDL will provide Blackbody MLI.
- Random Vibration can be done either at UW or SDL.
- SDL facilities will be used for Thermal Vacuum Testing.
- <u>Controller</u>
 - UTMC Aeroflex will manufacture and assemble the board (to UW design, using UW provided parts)
 - UW has resources to perform temperature cycling and acceptance testing over required temperature range.
 - SDL will conformal coat board

– SDL will perform Random Vibration in box fixture.

Resources

Blackbody/Controller •

– UW has all the resources and facilities to perform the end-to-end calibration of the Blackbody subsystem.

- Documents numbered
 - # format: 8300-0000 (8300 = GIFTS Project)
 - 8300-0001 is the Drawing List
 - Documents numbered in sequence (no "intelligent" number scheme)
- Major features
 - Drawing list is source of information about current revision of document
 - Pre-release: originator can update as needed and drawing list will have date of latest version

- After release: changes only by ECN
- All ECNs result in Rev change (8300-xxxx Rev N is complete definition - no ECN as part of doc reference)
- Control
 - Source files stored in central FTP location
 - Drawing list searchable on-line
 - Current PDF available via web search/browse page

Configuration Management

- CIL basis of hardware CM
- Manufacturing records show all assembly & test steps
 - includes lower level assy & test records
 - part traceablility

Result: can answer questions about what is where, what was done, who did it, etc.

- Product Assurance Requirements
- GIFTS Specific Product Assurance Requirements are derived from the Statement of Work and Product Assurance Plan.
- The GIFTS specific Quality Assurance Implementation Plan describes the methods and controls to be implemented by the University of Wisconsin.
- The requirements of GIFTS specific Product Assurance Implementation Plan are levied to subcontractors and suppliers.
- Personnel training and certification to NASA standards.
- Identification of risk and evaluation during all aspects of the work.
- Support design reviews, manufacturing readiness reviews, test readiness reviews, and pre-ship reviews.

- The GIFTS Performance Assurance Manager (PAM) shall direct and monitor the activities to assure conformance, identify the need for preventive and/or corrective actions, and implement them when necessary.
- The PAM shall coordinate all Safety, Reliability, and Quality Assurance issues and will report progress to SDL.

- Product Assurance activities include:
 - EEE Parts Engineering and Electronic Packaging
 - Radiation Effects Analysis
 - Reliability Engineering
 - Quality Assurance
 - Review and Inspection
 - Procurement Product Assurance
 - System Safety
 - Material and process control

- Product Assurance activities include cont'd:
 - Manufacturing and process control
 - Nonconformance Control & Reporting using close loop work order database (WOA)
 - Problem Report (PR)
 - Material Review Board (MRB),
 - Waiver,
 - Failure Analysis and Corrective Action report (FACR)
 - Ground Test Software Quality Assurance
 - Configuration Control

- Verify workmanship standards.
- Train and certify personnel on ESD, contamination control, manufacturing processes and procedures.
- Inspect and witness testing of hardware.
- Verify test equipment calibration.
- Conduct surveys and perform audits of subcontractors and manufacturers.
- Provide test software quality assurance.
- Ensure contamination control requirements are met. ullet
- Identify, review and approve special processes.
- Review, approve, and control work orders, problem ulletreports, and failure reports.

Computer Controlled

Work Order and Problem Record Process Flow

MADISON

• Questions answered – what can go wrong, what is likely, what are the consequences.

- Requirements Summary
 - Parts screening and qualification per GSFC 311-INST-001, Level 2, requirements derived from the GIFTS-IOMI statement of Work.
 - SDL/LaRC review and approve EEE Part Lists.
 - Derate EEE Parts per PPL-21
 - Perform GIDEP Search
 - Parts Control Board (PCB) Approach, a partnership arrangement with NASA/LaRC parts engineer and SDL.

- Part lists are reviewed and approved by the project team prior to flight procurements.
- Special considerations include:
 - Radiation evaluation of all active components
 - Radiation testing (TID and/or SEE) when necessary
 - No pure tin, cadmium, and zinc plating is allowed
 - Single lot (preferred), date code, traceability from part procurement, assembly, rework, and integration testing via parts identification and as build part lists

- Special considerations include cont'd:
 - Mandatory surge current testing on all tantalum capacitors
 - Age control requirements. Lot Date Code (LDC) older than 9501 requires DPA and room temperature rescreen
 - Parts traceability from procurement to assembly of boards.
 - GIDEP Alerts & NASA Advisories review and disposition
 - Parts Identification list (PIL) includes LDC, MFR, Radiation information of the flight lot

No Hazards Identified for GIFTS BB Subsystem

SPAC	SPACE DYNAMICS LABORATORY								
PAYLOAD HAZARD IDENTIFICATION MATRIX									
Origination Date: 2-19-04	Prigination Date: 2-19-04 Rev ision: 1.0								
PROGRAM: NASA/GIFTS									
SDL Project Manager: Lorin Zollinge	SDL Project Manager: Lorin Zollinger								
Flight Category (Balloon, Rocket, Shu	uttle, ISS, etc.):	Rocket							
Items shown with a "Y" in the table be and possible mitigation/control.	low are identifie	d as hazard groups that will need further evaluation							
HAZARD GROUP	Anticipated? Yes or No	Notes							
Acceleration/Impact	No								
Asphyxiation	No								
Ionizing Radiation	No								
Nonionizing Radiation	No								
Hazardous/Toxic Materials	No								
Purge Systems	No								
Pyro Systems	No								
Pressure Systems	No								
Confined Space	No								
Hydraulics	No								
Batteries	No								
Materials Handling	No								
Temperature	No								
Explosive Atmospheres	No								
Electrical	No								
Software	No								
Transportation	No								
Ground Operations	No								
Debris	No								

GIFTS Blackbody Subsystem Critical Design Review Action Items From PDR

Fred Best 9 March 2004

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-1	SDL	UW and LaRC	UW requested input from SDL on the parts list. They need a source for an 80-krad op amp, and would like to use as many similar parts as SDL as possible. SDL will supply the complete UW parts list to LaRC for review. Add thermistors & heaters. Define date/time for discussion about flight part procurement.

<u>CLOSED:</u> UW and SDL have coordinated on parts selection and are using common part types, where possible. The UW Parts List has been submitted to LaRC through SDL. Thermistors and heaters have been added to the list. SDL and UW have coordinated on flight part delivery.

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-2	UW	SDL	UW will add all errors to the electronics error budget.

<u>CLOSED</u>: UW has broken-out and included all known error contributors (within reason) for the Electronics Error Budget.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

EMI Requirements

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-3	SDL	UW & LaRC	SDL will provide UW with the EMI requirements, including limits. Will not send EV2 document.

<u>CLOSED:</u> SDL has provided UW the EMI document "GEO Weather EMC Requirements Specification and Control Plan."

ITAR Guidance

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-4	LaRC	SDL	Provide guidelines to SDL regarding providing sections of requirements documents to companies with potential ITAR issues.

OPEN: This action has not been closed.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

Board Fabrication Standards

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-5	SDL	UW & LaRC	SDL will provide flight board fabrication quality standard definition to UW.

<u>CLOSED</u>: Flight Board Fabrication and Assembly quality specifications have been proved to UW by SDL. This information resides in the SDL SM Electronics Box ICD.

Board Fabrication Standards

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-6	LaRC	SDL	Determine what flight board fabrication quality standard is desired

CLOSED: Flight Board Fabrication and Assembly Standards have been provided to SDL.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-7	SDL	LaRC	SDL will determine if UW needs to perform a venting study on evacuating the blackbody in the MLI region, and whether a vent needs to be added to the blackbody design.

<u>Closed:</u> The Blackbody design was reviewed to ensure that all internal volumes have a sufficient vent path. While it was determined that there was sufficient venting, slight modifications were made to the design to preferentially improve the vent flow path to the rear of the blackbody (away from GIFTS optics).

Survival Temperature of BB

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-8	U₩	SDL & LaRC	UW will define the survival temperature of the blackbody. Consider mechanical and thermistor issues.

CLOSED: UW has developed a mechanical design of the blackbody that will survive down to the required 180 K. We have also determined that the thermistors will survive temperatures down to this temperature. This is based on previous experience by the vendor (Thermometrics) and by the SABER program at SDL (using the same thermistors), where the required thermistor accuracy was demonstrated down to 77 K. For the GIFTS BB we have preserved the physical mounting techniques (to the extent possible) used by the SABER program.

BB Use of Survival Heater Power

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-9	SDL	LaRC	Define what survival heater power would be required to maintain blackbodies above survival temperature.

<u>CLOSED</u>: The idea of using survival heater power to maintain the blackbodies above survival temperature was rejected. The Survival Bus is on continuously, even during normal operation. Putting survival heaters on the cavity is an EMI concern because the bus is unfiltered which could lead to unwanted noise on the cavity thermistors. Putting survival heaters on the outside of the case (somewhat electrically shielded from the cavity thermistors) would cause thermal control problems (cavity heater fighting the case survival heater) which arise from a combination of thermal resistance between the cavity and the case and thermostat hysteresis.

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-10	UW	SDL	Define if the paint emissivity measurements are normal or hemispherical. Decide which way witness samples should be measured.

<u>CLOSED:</u> To properly calculate the Blackbody cavity emissivity, directional hemispheric reflectance measurements of the intrinsic paint are required. These measurements are made using an integrating sphere configured for near normal illumination of the paint sample and then measuring total hemispheric reflectance. In the past, these measurements have been made for UW by Labsphere. For GIFTS they will be made at Labsphere and NIST.

Thermal Paste Outgassing

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-11	UW	SDL	UW will investigate outgassing characteristics of thermal paste (Thermalloy 250 Thermal Joint Compound) used with thermistors. Verify acceptance with SDL.

<u>CLOSED:</u> UW is using Thermometrics thermistors. These are potted in place using a NASA approved low outgassing thermally conductive epoxy (Stycast 2850 FT). The mounting technique and epoxy are the same as used for the SABER program.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

THE UNIVERS

MADISON

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-12	SDL	LaRC	Define base address of BBC on SDL bus.

<u>CLOSED</u>: SDL defined the BBC bus address space as 180400-1807FF Hex. UW is using only 180400-180435 Hex. (54 bytes, count 0-53 decimal).

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR13	SDL	UW & LaRC	SDL will provide weight information on the SDL bus connectors.

CLOSED: UW obtained the Bus Connector weight.

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-14	SDL ,	LaRC	Provide weight for 26-pin HD female board connector.

CLOSED: UW obtained the 26-pin HD female board connector weight.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

SDL Bus Formating

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-15	SDL & UW	SDL	Robert Burt and Mark Werner will meet to decide how both the high and low calibration resistor measurements are included into the data coming down from the SM. (VHDL address decoder for SDL bus transactions.)

<u>CLOSED</u>: This meeting was held and a scheme was developed. UW added three permanent registers that will allow all the data for the calibration resistors to be available for every sample period.

End-to-End System Check

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-16	UW	SDL	Consider performing a final end-to-end check of thermistors and flight electronics. Perform test when blackbody is in isothermal temperature calibration chamber with reference PRT.

<u>CLOSED</u>: This calibration will be performed with the Flight Controller and Flight Blackbodies.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

Use CMM to Measure Paint Thickness

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-17	UW	SDL	Consider using the CCM (coordinate measurement machine) at SDL (or other CMM) to help measure cavity paint thickness.

<u>CLOSED</u>: It is important to have a non-contacting method for directly measuring paint thickness on the blackbody cavity. CMM requires contact, so it is not suitable for direct cavity paint thickness measurements. Paint thickness measurements will be made on flat witness samples painted at the same time as the cavities in a fixture that simulates the cavity geometry. Thickness measurements will be made using a micrometer and by taking mass measurements (before and after painting).

THE UNIVERSIT

Use Slot in G-10 Tube

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-18	UW ,	SDL	Consider using a slot in the circular end plates to mount the G-10 tube.

<u>CLOSED</u>: UW has gone away from using G-10 fiberglass epoxy. We now use a glass filled Noryl insulator that is better matched to the coefficient of expansion of the aluminum. There is a bolted connection between the Noryl and Aluminum (not epoxy as was planned when we were baselining G-10).

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-19	SDL	UW	SDL will provide information on qualified G-10 vendors to UW. Provide previous experience and margin to use.

CLOSED: The UW Blackbody design no longer uses G-10 Figerglass.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004 Slide 20

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-20	UW	SDL	Determine if both blackbodies can be at a common temperature for calibration tests.

<u>CLOSED</u>: The measurement range of the ABB is -40 to 0 C and for the HBB 0 to +40 C. Both blackbodies will be calibrated at an overlap temperature of 0 C.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-21	UW	SDL	Consider impacts of having capability to control both blackbodies
CLOSED: D	ue to the cha	ange in the therm	al interface, both blackbodies will be

<u>CLOSED</u>: Due to the change in the thermal interface, both blackbodies will be controlled.

<GIFTS_BB_CDR_PDR_RFI.ppt> 9 March 2004

THE UNIVERSITY

Ground Tests to Transfer Cal.

Action Item Number	ACTION TO	ACTION REQUESTED BY	DESCRIPTION OF ACTION
BB-PDR-22	SDL/UW	SDL	Define what tests are required during ground calibration to transfer calibration from ground calibration source to internal sources.

<u>CLOSED</u>: The external calibration source in thermal vacuum is viewed as a validation of the in-flight calibration procedures (provided by the internal sources combined with the required instrument characterization). Any unexpected differences will need to be resolved such that the fundamental calibration rests on the in-flight calibration.

REVISIONS								
LTR.	ECN	DESCRIPTION	DATE	APPROVED				
-	NA	Original release	3/8/04					

SHEET REVISION STATUS

ONELINE	VICIOI	01/1	100			diama diama dia		-			Street Caller	1	and an other land	-				and the second second
SHEET	· 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
REVISION	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1
SHEET	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
REVISION	and the second		-						e.	2								
SHEET	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
REVISION			2										-					
SHEET	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
REVISION		-	S.	100		a. 1#	ŝ				1			Plan				in the second se
SHEET	73	74	75	76	77	78	79	80	81	82	83	.84	85	86	87	88	89	90
REVISION		1																
SHEET	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108
REVISION					2							6						
CONTROLLE	D DIST.	LIST	1															
1	16					Sp	ace	Scie	ence	and	Eng	inee	erina	Cer	nter			
2	17					- 6												
3	18		7	TH			OCITY		14/10	CON	CIN	M		INOS	MIC	CON		
4	10	é, en	TITI	F	EUN	IVER	(SIT	I UF	VVIS	CON	SIN	- 14	ADI	JON,	VVIJ	CON	JIN	
5	19			Te	*													
5	20			-13			~ .											
0	21		GI	-151	Slack	bod	y Sui	osys	tem									
1	22		Sp	ecitio	catio	n		-						1			-	DATE
8	23		ORIO	GINATO	R	D	ATE	EN	GINEE	R		DA	TE	ENG	SINEER			DATE
9	24		SDE					MW	1					DA			in the second	
10	25			n Car		épi b		PR	DUC	r Assuf	RANCE	DA	TE	APP	PROVAL			DATE
11	26		-					NN	С				1248	FAB	£			_
12	27		FILE	NAME								P	ROJE	CT NO.				
13	28	14. J. U.S	11.5	GIFTS_BBC_Spec_8300-0004.doc			0.11		155	830	0							
14	29	(aqei)	DRA	WING	NO.	191102	3 11	12 20	1 19 12	15430	SCA	LE	SIZ	E	SH	EET		
15	30			1. 3		8300	0-0004	l .				NA	-	Α	-	Page	1 of	27
15	30			1. 3		8300	0-0004	l.				NA	-	Α	-	Page	1 of	27

1. Scope

This document provides the functional description, technical specifications, and external interface definition for the Blackbody Calibration Subsystem for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS). The blackbody subsystem is located in the GIFTS SM and consists of two blackbodies (both located on the optics bench), a controller (located in the SM electronics box), and cabling that connects the blackbodies to the controller. The components of the Blackbody Calibration Subsystem are illustrated in Figure 1.0.

Designated specifications are guaranteed by test or guaranteed by design over the entire operating temperature range. All other specifications are for reference only.

2. Applicable Documents

The following documents are applicable to this specification:

- Statement of Work for SDL Contract to UW (C922185) (17 December 2003)
- GIFTS Instrument, Requirements Document 2.0
- GIFTS SM Main Electronics Box Circuit Card Interface Control Document (SDL/02-265)

The GIRD specifies the absolute calibration accuracy of the GIFTS instrument to be better than 1 K brightness temperature for Earth scenes brightness temperatures greater

* Guaranteed by Test

^ Guaranteed by Design

<GIFTS BBC_Spec_8300-0004.doc>

GIFTS Blackbody Subsystem Specification 8300-0004

than 240 K (SW/MW channel) and > 190 K (LW channel) and shall be traceable to the National Institute of Standards and Technology. The reproducibility shall be ≤ 0.2 K for the same conditions.

The GIFTS calibration model uses the calibration equation to determine the GIFTS instrument errors associated with uncertainties in various GIFTS instrument calibration parameters, including, blackbody emissivity uncertainty and blackbody temperature uncertainty. Emissivity and temperature uncertainties used in the calibration model are used in this specification for the on-board blackbody calibration subsystem.

3. Functional Description

This section provides the functional description of the Blackbody Calibration subsystem. A block diagram of the subsystem is shown in Figure 3.0.

3.1. Blackbodies

A section view of the Ambient Blackbody (ABB) is presented in Figure 3.1. The Hot Blackbody (HBB) is identical to the ABB except that the thermistors are of a different value. The inside of the cavity is painted black. The cavity is structurally supported and thermally isolated from the base of the blackbody case by the structural support. Multi-

- * Guaranteed by Test
- ^ Guaranteed by Design

GIFTS Blackbody Subsystem Specification 8300-0004

layer insulation (MLI) (not shown in the figure) completely surrounds the cavity outer surface to minimize radiation heat transfer to the Blackbody Enclosure. There is MLI on the outside of the enclosure, as well. Thermistors, embedded into the cavity wall, are used for temperature measurement. Each blackbody has four temperature measurement thermistors, two temperature control thermistors, one overtemperature thermistor, and one heater.

Figure 3.1 Section view of the Blackbody.

3.2. Blackbody Controller (BBC)

The BBC measures and controls the temperature of both blackbodies. The BBC has two modes: Constant Temperature and Constant Power. Mode may be selected independently for each blackbody. In the Constant Temperature mode, heater power is controlled to hold the blackbody temperature very close to the set point. In the Constant Power mode, the heater duty cycle is held constant at the commanded value. In this mode, the blackbody, after stabilization, approximately tracks ambient temperature with a constant difference. Heater power may be set to zero, in which case the blackbody temperature protection is provided.

The BBC communicates with the C&DH (Command and Data Handler) through the SDL Bus interface. Commands may be sent to the BBC to change operating modes and parameters. Data is also sent to the C&DH through this interface. The available data includes resistance data as well as BBC operational data.

On power-up, the BBC automatically begins operating in it's default state. The default state causes the BBC to come up with both blackbodies in the constant temperature mode, with the set points at their normal values. Parameters of the default state can not be changed by command.

Thermistors are used to measure temperature. Each thermistor is continuously excited by a voltage source and a separate precision resistor in a half bridge configuration. The resulting voltage for each thermistor is measured at the sampling rate of once every 363 ms. The thermistors are sampled sequentially. Each sample consists of 256 consecutive 14-bit conversions, averaged to return a 16-bit value. Internal calibration resistors are measured during each sampling cycle to minimize measurement error. The BBC does not convert counts to actual temperature values; this conversion is performed elsewhere. Output data is updated at the sampling rate.

Dedicated redundant blackbody thermistors are used to control temperature. The temperature set point is set via the data interface. Analog controllers set the heater duty cycle to the appropriate value. Pulse width modulators (PWM) drive the blackbody heaters. The heater switches operates at approximately 10 Hz, with low output slew rates to minimize electromagnetic interference.

Table 4.0								
Specification	Typical	Minimum	Maximum	Units	Notes			
HBB Temp. Measurement Range		0	+40	°C	2,*			
ABB Temp. Measurement Range		-40	0	°C	2,*			
Temp. Measurement Resolution			0.003	°C	2,^			
Temp. Measurement Error (±)					2,3,7			
Electronics (at delivery)		2	0.02	°C	*			
Thermistor (at delivery)	and the second		0.03	С	*			
On-orbit drift-electronics			0.01	С.	^			
On-orbit drift-thermistor			<u>0.04</u>	C	^			
Total			0.10	С				
HBB Temp. Set Point	+17	0	+40	°C	*			
ABB Temp. Set Point	-18	-40	0	°C	*			
Temperature Set Point Resolution			0.2	°C	2,^			
Temperature Set Point Stability			0.005	°C	8,^			
Heater PWM Frequency	10	8	12	Hz	*			
Sampling Rate	2.76	2.60	2.90	Hz	^ .			
Data Readout Rate			3	Hz	· ^			
Overtemperature Limit		+47	+60	°C	*			
Power					-			
Heaters (Total)	0.7	0	4.0 ^	W	5,6			
Electronics Dissipation			<u>1.2 ^</u>	W	4			
Total			5.2 ^	W				
Mass								
Hot Blackbody			1,000 *	g				
Ambient Blackbody		an start here	1,000 *	g				
Controller			400 *	g				
Total			2,400 *	g				

4. Top Level Specifications

* Guaranteed by Test

[^] Guaranteed by Design

<GIFTS BBC_Spec_8300-0004.doc>

GIFTS Blackbody Subsystem Specification 8300-0004

Specification	Typical	Minimum	Maximum	Units	Notes
Cavity Aperture Diameter Field of View		2.54 10	2.57 14	Cm Deg.	*
Emissivity (680 cm ⁻¹ to 2,300 cm ⁻¹) Cavity Emissivity Cavity Emissivity Uncertainty (3σ)		0.996 0.002			^

<u>Notes</u>

- 1. Unless otherwise noted, all specifications apply over the entire Controller and Blackbody temperature ranges.
- 2. With specified thermistors, over specified temperature measurement range.
- 3. After calibration with flight interconnecting cables, or equivalent.
- 4. Electronics dissipation at maximum heater power, but exclusive of heater power.
- 5. "Typical" heater power is the total for both blackbodies, calculated at the Orbital Average (average of the power to maintain the set point in the worst case cold and worst case hot parts of the orbit), with blackbodies at nominal set points, at the beginning of mission life.
- 6. Maximum heater power occurs during blackbody warm-up.
- 7. Guaranteed for Controller Temperature Range of -40 to +30°C only.
- 8. For a 1°C change in Controller board temperature.

4.1. Blackbody Operating Modes

There are two operating modes for the each blackbody, which may be selected independently.

Mode	Description				
Constant Temperature	Temperature is controlled at the				
· -	commanded set point.				
Constant Power	Heater duty cycle is maintained at the				
	designated value. Duty cycle may be				
	set to zero.				

4.2. Blackbody Temperature Control

In the constant temperature mode, the blackbody temperature is maintained at a set point determined by the set point integer. Table 4.2.1 shows the relationships between set point integer, temperature, and thermistor voltage. More precise relationships may be determined by calibration.

GIFTS Blackbody Subsystem Specification 8300-0004

/			and the second se	and the second se	and the second se
Set Point Integer	HBB Temp	perature, °C	ABB Temp	Nominal	
(decimal)	Minimum *	Maximum *	Minimum *	Maximum *	Voltage
4095	-5	0	-45	-40	0.827V
0	+40	+45	0	+5	0.328V

Table 4.2.1

One of the two dedicated redundant control thermistors on each blackbody is used to control its temperature. The temperature set points are set via the SDL bus interface. Conversion from temperature to the set point integer is performed elsewhere. The difference between the thermistor resistance and the set point is processed by an analog Proportional-Integral-Derivative (PID) circuit to determine the required heater power. The output of the PID circuit sets the heater duty cycle. A pulse width modulator (PWM) drives the blackbody heater. The PWM frequency is asynchronous with respect to data collection. The heater switch operates at approximately 10 Hz, with low output slew rates to minimize EMI. PID parameters are determined by component values and are selected to match the characteristics of the blackbody. The PID circuit includes a single-pole lowpass function with a cutoff frequency of less than 5 Hz and limits the integral (I) component to ensure stability.

The control thermistors are redundant and selected by command from the C&DH. There is no automatic switching of control thermistor.

Table 4.2.2						
Parameter	Minimum	Maximum	Units			
Heater Voltage *	4.70	5.25	Volts			
ABB Heater Resistance	14.4	14.7	Ohms			
HBB Heater Resistance	14.4	14.7	Ohms			
PWM Frequency *	8	12	Hz			
Duty Cycle *	0	100	%			
Heater Output Fuse		2	Α			

Table 4.2.2 lists the electrical parameters of each blackbody heater.

Table 4.2.3 lists blackbody characteristics related to the dynamic temperature response.

Specification	Minimum	Maximum	Units			
Cavity Thermal Mass	200	220	J/°C			
Thermistor Time Constant		1	Second			

4.3. Constant Power Mode Operation

In the Constant Power mode, the set point integer controls the heater duty cycle The relationship between the set point integer and duty cycle is given in table 4.3.1.

* Guaranteed by Test

[^] Guaranteed by Design

Table 4.	3	
Parameter	Minimum	Maximum
Set Point for zero duty cycle (decimal) *	10	200
Set Point for 100% duty cycle (decimal) *	3890	4090
Nonlinearity ^		1%
Duty Cycle Resolution ^		0.03%

					•	
9	h	н	0		-2	
α	IJ		С.	-		

4.4. Overtemperature Protection

Overtemperature protection systems ensure that overheating does not damage a blackbody. In the constant temperature mode, the BBC does not allow the set point to be commanded to a value outside the ranges specified in table 4.2.1. In the constant temperature mode, an overtemperature condition may occur only in case of a failure. In the constant power mode, however, an overtemperature condition may occur without a Blackbody Controller failure if excessive heater power is applied.

The overtemperature protection system is independent of the primary heater control system so that no single-point BBC or thermistor failure results in overheating of the blackbody. A dedicated blackbody temperature sensor on each blackbody senses its temperature and protection circuitry removes power from the heater if the temperature exceeds the overtemperature limit. The heater is automatically enabled when blackbody temperature drops below the limit. Hysteresis is at least 1°C. In the overtemperature protection mode, the blackbody temperature cycles about the limit as long as power is applied to the system. An indicator is set when an overtemperature condition is detected. The indicator is reset only when power is removed from the BBC, the BBC is reset, or new commands are received from the C&DH. Overtemperature protection systems for the two blackbodies operate independently, with separate indicators.

4.5. Temperature Measurement

Each thermistor and calibration resistor is connected to a precision resistor and voltage source in a half-bridge configuration. The fixed excitation voltage setting is common to all 16 channels. To improve resolution, the full range of the voltage across the thermistor is about four times the range of the A/D converter. Five values of offset voltage are available to bring the measured voltage within the A/D converter range. Four of these offset values are used for temperature measurement, while the fifth (zero offset) is used only for the temperature error and spare channels. All (4) ABB thermistors (Channels 0 - 3, see section 4.5.3) share the same offset value, as do the (4) HBB thermistors (Channels 4-7), though ABB and HBB offsets may be set independently. The offset for each of the three spare channels (8-10) may be set independently. Zero offset is available for all thermistor and spare channels, but is not useful for thermistor inputs.

Each thermistor and calibration resistor is sampled during each sampling interval. When a particular thermistor is to be measured, the offset value is set and a multiplexer connects the half-bridge to the A/D converter. A suitable delay then allows the input to

Page 8 of 27

GIFTS Blackbody Subsystem Specification 8300-0004

the A/D converter to settle. After settling, 256 consecutive A/D conversions are rapidly performed and the data are averaged providing a 16 bit data value. After the results of the measurement have been stored, the next channel is measured in the same manner until all channels have been measured. The digital data from the A/D convert is in the 2's compliment binary format. The 16 bit data value at the negative full scale input voltage is 8000 H (-32,768 dec) and 7FFC H (32,764 dec) for a positive full scale input voltage.

Autoranging is available for all channels except the calibration channels. Autoranging can be enabled independently by group for ABB thermistors and HBB thermistors, and individually for each of the spare channels. Channel 0 is used for ABB autoranging, and Channel 4 for HBB autoranging. When an out of range value is detected, the offset is increased or decreased, as appropriate, for the next data collection. When autoranging is enabled, offset range count is increased if the averaged 16-bit ADC count is less than 4096 (dec) counts above the negative full scale value and decreased if the count is greater than the positive full scale value minus 4092 (dec) counts. Only offsets 00 through 03 are used in the autoranging mode. Offset is adjusted only once after each data collection; up to 3 data collections may be required before the correct offset is reached.

Offset values for the five calibration channels are fixed and selected automatically. The calibration channels corresponding to the ends of the highest and lowest ranges (Channels 11 and 15) are measured at one offset value. The remaining three calibration channels (Channels 12, 13, 14) are measured at two offset values, providing calibration points near the high and low ends of two ranges. Each set of data includes the data for both offset values for these channels. A total of 19 data registers are provided.

All spare channels may be configured to measure an external input voltage, with or without an internal half-bridge resistor. Spare channel 1 may also be configured to measure the voltage across an internal board temperature thermistor. The input voltage measurement ranges are given in Table 4.5.4.

Spare channels 2 and 3 may be configured to measure temperature error, which is the difference between the set point and actual blackbody temperature. Offset range 04 must be used in this configuration. Zero temperature error results in a value between -300 and +300 (decimal) counts. Full scale range is between ± 11 °C and ± 13 °C.

The spare channels are configured by selective installation of resistors, and cannot be changed after assembly and final testing.

Application	Part Number	Vendor	Notes
ABB Thermistor-measurement (4)	SP60AB103FAI	Thermometrics	10K at 25°C
ABB Thermistor-Control (2-redundant)	SP60AB103FAI	Thermometrics	10K at 25°C
ABB Overtemperature Thermistor (1)	SP60AB103FAI	Thermometrics	10K at 25°C
HBB Thermistor-measurement (4)	SP60AA222FAI	Thermometrics	2.20K at 25°C
HBB Thermistor-Control (2-redundant)	SP60AA222FAI	Thermometrics	2.20K at 25°C
HBB Overtemperature Thermistor (1)	SP60AA222FAI	Thermometrics	2.20K at 25°C

Table 4.5.1 Blackbody Thermistors

* Guaranteed by Test

^ Guaranteed by Design

Page 9 of 27

... T

All Channels	Minimum	Maximum	Units
Sampling Rate (all channels)	2.6	2.9	Hz
Voltage Range	0.247	0.726	Volts
External Shunt Capacitance		500	pF
Excitation Voltage *	0.95	1.05	Volts

Table 4.5.2 Thermistor Input Parameters

	A Martin lawar			SDL Bus
Channel	Analog Multiplexer	Offset	Description	Byte Address
	Address (Decimal)			Offset
ABB A	00	ABB	ABB Thermistor A	12,13
ABB B	01	ABB	ABB Thermistor B	14,15
ABB C	02	ABB	ABB Thermistor C	16,17
ABB D	03	ABB	ABB Thermistor D	18,19
HBB A	04	HBB	HBB Thermistor A	20,21
HBB B	05	HBB	HBB Thermistor B	22,23
HBB C	06	HBB	HBB Thermistor C	24,25
HBB D	07	HBB	HBB Thermistor D	26,27
ST1	08	ST1	Spare 1	28,29
ST2	09	ST2	Spare 2 (ABB Error)	30,31
ST3	10	ST3	Spare 3 (HBB Error)	32,33
CAL1	11	03	Calibration 1	34,35
CAL2	12	03	Calibration 2 Low	36,37
CAL3	13	02	Calibration 3 Low	38,39
CAL4	14	01	Calibration 4 Low	40,41
CAL5	15	00	Calibration 5	42,43
CAL2	12	02	Calibration 2 High	44,45
CAL3	13	01	Calibration 3 High	46,47
CAL4	14	00	Calibration 4 High	48,49

Table 4.5.3 Measurement Channel Assignments

Table 4.5.4 Measurement Offset Ranges

	Lunat Valtage	ABB	HBB
Offset (Decimal)	Input voltage	Temperature	Temperature
	Kange	Range (°C)	Range (°C)
00	+0.578 to +0.762	-14.1 to +4.9	25.5 to 47.1
01	+0.456 to +0.639	-24.7 to -8.6	14.6 to 28.2
02	+0.334 to +0.517	-33.6 to -19.2	4.3 to 19.8
03	+0.212 to +0.396	-43.4 to -28.4	-7.1 to +9.2
04	-0.092 to +0.092	N/A	N/A
05	-0.092 to +0.092	N/A	N/A
06	-0.092 to +0.092	N/A	N/A
07	-0.092 to +0.092	N/A	N/A

* Guaranteed by Test ^ Guaranteed by Design

Page 10 of 27

4.6. Default Operation

When power is applied to the BBC and in the absence of commands from the C&DH and without reset applied, the BBC operates in the state indicated in table 4.6. A jumper (JMP1) may be installed on the board to change these defaults for laboratory operation.

1	Table 4.6	literation of the		
Parameter	State or Value *			
	JMP1 Out	JMP1 In		
ABB Mode	Constant Temperature	Constant Temperature		
ABB Set Point Temperature	-18°C ±1°C	0°C ±1°C		
ABB Set Point Integer	1838	107		
ABB Control Thermistor	Α	A		
ABB Offset	01	01		
HBB Mode	Constant Temperature	Constant Temperature		
HBB Control Thermistor	A	Α		
HBB Set Point Temperature	+17°C ±1°C	$+40^{\circ}C \pm 1^{\circ}C$		
HBB Set Point Integer	2157	157		
HBB Offset	01	01		
ST1 Offset	01	01		
ST2 Offset	01	01		
ST3 Offset	01	01		
Autoranging	Enabled	Enabled		

4.7. Reset Operation

A reset input is also provided on the SDL interface. When the reset is applied, it causes the BBC to return to the default state. Reset occurs on the leading edge of this signal, however the BBC does not begin normal default operation and data collection until the trailing edge of the reset signal. Normal operation and data collection begins within 1 ms of the trailing edge of the reset signal.

While the reset is asserted, no data is collected, but both temperature controllers are enabled in the constant temperature mode. Temperature set point integer is 4095 (minimum temperature) while reset is asserted. This provides a minimum power mode while still keeping the blackbodies at a safe temperature.

4.8. Freeze Mode Operation

Freeze mode operation is used only for laboratory operation testing. When a jumper is applied (JMP2), the BBC collects data only from analog multiplexer channel 01. The data is stored in all (19) the measurement channel registers. Each register contains data from a separate set of averaged samples, as in normal operation, but each with the multiplexer set to channel 01. Timing is the same as in normal operation. The offset used in the freeze mode is the programmed ABB value. Autoranging is not available. The status

[^] Guaranteed by Design

GIFTS Blackbody Subsystem Specification 8300-0004

registers for the offset values of all channels other than analog multiplexer channel 01 may be disregarded in this mode of operation.

5. Interfaces

This section defines the interfaces between the GIFTS S/M and the Blackbody Calibration Subsystem and between the Blackbody Controller and Blackbodies.

5.1. SDL Bus Interface

The BBC is allocated the address space 180400-1807FF. The BBC responds to the address space 180400-180735 hex on the SDL bus. The BBC does not require any wait states for SDL bus transactions. The BBC requires space for a total of 27 16-bit registers.

The SDL Bus is defined in the GIFTS SM Main Electronics Box Circuit Card Interface Control Document.

5.1.1. Command and Data Interface *

The BBC receives commands from the C&DH via write cycles on the SDL Bus. The BBC outputs data to the C&DH via read cycles on the SDL Bus. Commands are received by the BBC at any time. The BBC implements any commands at the end of a sampling interval. All command register are read/write. All data and status registers are read only. The data read from the command and data registers are valid if the C&DH sets the semaphore bit, see Section 5.1.3.

For the measurement channel assignments, see Table 4.5.3.

Table 5.1.1.1 lists the BBC commands and data.

Table 5.1.1.2 is a Command Summary.

Table 5.1.1.3 is a Data Summary.

Byte Address Offset	0	1	2	3
Description	Status 0 Low Byte	Status 0 High Byte	Status 1 Low Byte	Status 1 High Byte
Read/Write	R	R	R	R
Bit 0 (LSB)	Fail	ABB Offset	ABB Offset	Spare 1
		Auto Range	Bit 0	Offset Bit 2
Bit 1	ADC	HBB Offset	ABB Offset	Spare 2
	Timeout	Auto Range	Bit 1	Offset Bit 0
Bit 2	ABB Temp/Power	Spare 1 Offset	ABB Offset	Spare 2
	Mode	Auto Range	Bit 2	Offset Bit 1

Table 5.1.1.1 Commands and Data

* Guaranteed by Test

^ Guaranteed by Design

Page 12 of 27

GIFTS Blackbody Subsystem Specification 8300-0004

<GIFTS_BBC_Spec_8300-0004.doc>

Byte Address Offset	0	1	2	3
Bit 3	HBB Temp/Power Mode	Spare 2 Offset Auto Range	HBB Offset Bit 0	Spare 2 Offset Bit 2
Bit 4	ABB Control Thermistor Select	Spare 3 Offset Auto Range	HBB Offset Bit 1	Spare 3 Offset Bit 0
Bit 5	HBB Control Thermistor Select	0	HBB Offset Bit 2	Spare 3 Offset Bit 1
Bit 6	ABB Overtemperature	0	Spare 1 Offset Bit 0	Spare 3 Offset Bit 2
Bit 7 (MSB)	HBB Overtemperature	ADC Timout Sticky Bit	Spare 1 Offset Bit 1	0

Table 5.1.1.1 (continued)

Byte Address Offset	4	5	6	7	8	9
Description	ABB Set Point Low Byte	ABB Set Point High Byte	HBB Set Point Low Byte	HBB Set Point High Byte	Mode	Auto Range
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W
Bit 0 (LSB)	Bit 0 (lsb)	bit 8	bit 0 (lsb)	bit 8	RW Bit	ABB Offset Auto Range Sel.
Bit 1	Bit 1	bit 9	Bit 1	bit 9	RW Bit	HBB Offset Auto Range Sel.
Bit 2	Bit 2	bit 10	Bit 2	bit 10	ABB Temp/Power Mode	Spare 1 Offset Auto Range Sel.
Bit 3	Bit 3	bit 11	Bit 3	bit 11	HBB Temp/Power Mode	Spare 2 Offset Auto Range Sel.
Bit 4	Bit 4	Not Used	Bit 4	Not Used	ABB Control Thermistor Select	Spare 3 Offset Auto Range Sel.
Bit 5	Bit 5	Not Used	Bit 5	Not Used	HBB Control Thermistor Select	RW Bit
Bit 6	Bit 6	Not Used	Bit 6	Not Used	RW Bit	RW Bit
Bit 7 (MSB)	Bit 7	Not Used	Bit 7	Not Used	RW Bit	RW Bit

* Guaranteed by Test

^ Guaranteed by Design

<GIFTS_BBC_Spec_8300-0004.doc>

D

GIFTS Blackbody Subsystem Specification 8300-0004

		Table ettint	containa a			
Byte Address	10	11	12-48	13-49	50	51 ·
Offset			even	odd		
Description	Offset,	Offset,	Data,	Data,	Frame	Frame
	Programmed	Programmed	Low Byte	High Byte	Count	Count
	Low Byte	High Byte			Low Byte	High Byte
Read/Write	R/W	R/W	R	R	R	R
Bit 0 (LSB)	ABB Offset	Spare 1 Offset	Bit 00	Bit 08	bit 00	bit 08
, í	Bit 0	Bit 2		and the second second		
Bit 1	ABB Offset	Spare 2 Offset	Bit 01	Bit 09	bit 01	bit 09
	Bit 1	Bit 0				
Bit 2	ABB Offset	Spare 2 Offset	Bit 02	Bit 10	bit 02	bit 10
	Bit 2	Bit 1				
Bit 3	HBB Offset	Spare 2 Offset	Bit 03	Bit 11	bit 03	bit 11
	Bit 0	Bit 2				
Bit 4	HBB Offset	Spare 3 Offset	Bit 04	Bit 12	bit 04	bit 12
8	Bit 1	Bit 0				
Bit 5	HBB Offset	Spare 3 Offset	Bit 05	Bit 13	bit 05	bit 13
	Bit 2	Bit 1				
Bit 6	Spare 1 Offset	Spare 3 Offset	Bit 06	Bit 14	bit 06	bit 14
	Bit 0	Bit 2				
Bit 7 (MSB)	Spare 1 Offset	RW Bit	Bit 07	Bit 15	bit 07	bit 15
	Bit 1					

able 5	1.1.1	(continued)

Byte Address Offset	52	53	
Description	Semaphore	Semaphore	
	Low Byte	High Byte	
Read/Write	R/W	R/W	
Bit 0 (LSB)	C&DH Access	Not used	
Bit 1	Not used	Not used	
Bit 2	Not used	Not used	
Bit 3	Not used	Not used	
Bit 4	Not used	Not used	
Bit 5	Not used	Not used	
Bit 6-	Not used Not use		
Bit 7 (MSB)	Not used	Not used	

Note: All "Not used" bits are read as 0.

* Guaranteed by Test ^ Guaranteed by Design

Command	Bits
ABB Set Point	12
HBB Set Point	12
ABB Offset	3
HBB Offset	3
ABB Mode (Constant Power or Constant Temperature)	1
HBB Mode (Constant Power or Constant Temperature)	1
ABB Autorange Select	1
ABB Autorange Select	1
Spare Channel Offset Select	9
Spare Channel Autorange Select	3.
ABB Control Thermistor A or B	1
HBB Control Thermistor A or B	1
C&DH Access	1
Not used	23
RW Bit	8
Тс	otal 80

Table 5.1.1.2 Command Summary (Read/Write)

Table 5.1.1.3 Data Summary (Read Only)

Data	Bits
Resistance Data (19 registers)	304
Frame Count	16
ABB Offset	3
ABB Offset Autorange	1
HBB Offset	3
HBB Offset Autorange	1
Spare Channel Offsets	9
Spare Channel Autorange	3
ABB Mode (Constant Power or Constant Temperature)	1
ABB Control Thermistor A or B	1
Status Register "zero" bits	3
HBB Mode (Constant Power or Constant Temperature)	1
HBB Control Thermistor A or B	1
ADC Timeout	1
ADC Timeout Sticky Bit	1
ABB Overtemperature	1
HBB Overtemperature	1
Failure Indicator	1
Total	352

* Guaranteed by Test ^ Guaranteed by Design

5.1.2. Semaphore Register

The BBC register at the offset address of 34H contains the semaphore bit in location 0. To ensure that the data set read is from only one data collection cycle, the C&DH sets the semaphore bit to 1 before reading the BBC registers. The C&DH sets the semaphore bit back to 0 once it has read all the BBC data. Failure to set the semaphore bit back to 0 will cause the BCC to not update the data output registers.

The C&DH must also set the semaphore bit before writing any control parameters to the BBC and reset the semaphore bit after writing any control parameters. Any control parameters written to the BBC take effect at the end of the next sampling interval after the semaphore bit has been set to 0. This implies the C&DH wait for a minimum of 1.5 sampling intervals (0.544 sec) after writing a control parameter, before it executes a read to verify these written parameters.

Table 5.1.2				
Byte Address Offset	52	53		
Description	Semaphore low	Semaphore high		
Read/Write	R/W	R/W		
Bit 0 (LSB)	C&DH Access	0		
Bit 1	0	0		
Bit 2	0	0		
Bit 3	0	0		
Bit 4	0	0		
Bit 5	0	0		
Bit 6	0	0		
Bit 7 (MSB)	0	0		

Table 5.1.2 defines the semaphore register.

5.1.3. C&DH Interface Bus Timing ^

The Blackbody Controller meets the requirements of the GIFTS SM Main Electronics Box Circuit Card ICD.

5.1.4. Electrical Power Interface

Power requirements are given in table 5.1.4.

All supply voltages are turned on simultaneously. No more than 10 ms may elapse between the time the first supply voltage reaches 10% of its nominal value and the time at which the last reaches and remains within its specified range. Normal operation begins less than 3 seconds after all supply voltages reach and remain within their specified ranges. GIFTS Blackbody Subsystem Specification 8300-0004

Table 5.1.4					
Nominal Voltage	Minimum Voltage *	Maximum Voltage *	Minimum Current	Maximum Current	Maximum Ripple and Noise 10 Hz to 1 MHz
2.5	2.3	2.7	0	120 mA	100 mV P-P
+5 V	4.75 V	5.25 V	0	805 mA	100 mV P-P
+12 V	+11.4 V	+12.6 V	0	18.0 mA	50 mV P-P
-12 V	-11.4 V	-12.6 V	0	21.0 mA	50 mV P-P

Table 5.1.4

5.1.5. Bus Connector

Pin assignments for the Bus Connector are listed in Table 5.1.5. Pins not used by the Blackbody Controller are not shown.

* Guaranteed by Test ^ Guaranteed by Design

E

Table 5.1.5							
Signal	Pin	Signal	Pin	Signal	Pin		
A0	166	DATA 15	A 15 22 GND		207		
Al	28	WRL# 88 GND		208			
A2	98	RESET4(BB)# 81		SHIELD	8		
A3	167	ADV#	20	SHIELD	17		
A4	29	READY4(BB)#	14	SHIELD	19		
A5	168	RD#	157	SHIELD	37		
A6	30	SYS_CLK	155	SHIELD	78		
A7	100	+2.5V	3	SHIELD	. 87		
A8	169	+2.5V	73	SHIELD	89		
A9	31	+2.5V	141	SHIELD	94		
A10	101	+3.3V	4	SHIELD	97		
A11	170	+3.3V	74	SHIELD	99		
A12	32	+3.3V	142	SHIELD	103		
A13	102	+5V	5	SHIELD	146		
A14	171	+5V	75	SHIELD	154		
A15	33	+5V	143	SHIELD	156		
A16	172	+12V	6	SHIELD	158		
A17	34	+12V	76	SHIELD	174		
A18	104	+12V	144	SHIELD	176		
A19	173	-12V	7	SHIELD	188		
A20	35	-12V	77	SHIELD	189		
DATA 0	165	-12V	145	SHIELD	190		
DATA 1	27	GND	1	SHIELD	191		
DATA 2	96	GND	2	SHIELD	192		
DATA 3	164	GND	8 SHIELD		193		
DATA 4	26	GND	69	SHIELD	194		
DATA 5	95	GND	70				
DATA 6	163	GND	71				
DATA 7	25	GND	72	-			
DATA 8	162	GND	137				
DATA 9	24	GND	138				
DATA 10	93	GND	139				
DATA 11	161	GND	140				
DATA 12	23						
DATA 13	92						
DATA 14	160						

5.2. Blackbody Electrical Interface

The Blackbody Controller interfaces to the Ambient Blackbody and the Hot Blackbody. All cabling between the blackbodies and the Blackbody Controller are provided by the SM contractor.

The interconnecting cable configuration and connector types are specified in Figure 5.2 and Table 5.2. Shield configuration and termination is precisely as shown in Figure 5.2 Ambient and Hot Blackbody cables are identical. The maximum DC resistance for each wire in the cable is 0.14 Ohm at 25° C. (Total wire resistance in series with each heater or thermistor is twice this value.) Final calibration of the Blackbody Controller Subsystem is performed with the flight interconnecting cables or equivalent.

The mechanical requirements for the interconnecting cables are given in section 5.3.1.

GIFTS Blackbody Subsystem Specification 8300-0004

SDD26M10M0G

SDD26F10M0G

Blackbody Controller

Notes:

X Indicates twisted pair

Wires on pins 1-5 are not enclosed in shield

DC Resistance of each wire less than 0.14 Ohm at 25 degrees C

Two cables are required

* Guaranteed by Test ^ Guaranteed by Design

Page 20 of 27

Blackbody

Figure 5.2

Blackbody Cable Configuration
Pin	Signal	Maximum Current	Signal Description			
1	HxA1	0.5A	Heater 1 +			
2	HxB1	0.5A	Heater 1 -			
3	HxA2	0.5A	Heater 2 +			
4	HxB2	0.5A	Heater 2 -			
5	DGND	0.5A	Cavity Ground			
6	OTx		Overtemperature Thermistor			
7	OTx+		Overtemperature Thermistor Source			
8	THxA		Thermistor A			
9	AGND		Thermistor A Return			
10	THxB		Thermistor B			
11	AGND		Thermistor B Return			
12	THxC		Thermistor C			
13	AGND		Thermistor C Return			
14	THxD		Thermistor D			
15	AGND		Thermistor D Return			
16	ST1		Spare Thermistor 1			
17	AGND		Spare Thermistor 1 Return			
18	ST2		Spare Thermistor 2			
19	AGND		Spare Thermistor 2 Return			
20	ST3		Spare Thermistor 3			
21	AGND		Spare Thermistor 3 Return			
22	CTxA		Control Thermistor A			
23	AGND		Control Thermistor A Return			
24	CTxB		Control Thermistor B			
25	AGND		Control Thermistor B Return			
26	Shield		Shield			

Table 5.2 Blackbody Cables and Connectors

(x=1 for ABB, 2 for HBB)

* Guaranteed by Test ^ Guaranteed by Design Page 21 of 27

Mechanical Interface 5.3.

5.3.1. Blackbody Mechanical Interface

The blackbody mounting interface is presented in Figure 5.3.1 and the Blackbody envelope is presented in Figure 5.3.2. The mechanical interfaces and envelopes for both the Ambient Blackbody and Hot Blackbody are identical.

All cabling between the blackbodies and the Blackbody Controller are provided by the SM contractor. The harness will accommodate blackbody platform translation, and will provide strain relief such that the resulting loads are not transmitted to the blackbody connectors. The blackbodies have no provisions for mounting the harness other than the electrical connectors with female jackscrews. The harness will have thermal resistance and insulation as noted in Section 5.4.1.

Figure 5.3.1. Mounting interface for the Blackbodies (dimensions in inches).

GIFTS Blackbody Subsystem Specification 8300-0004

5.3.2. Blackbody Controller Mechanical Interface

The Blackbody Controller is contained on a single electronics board that is housed in the SM Electronics Box. The board outline is defined in the GIFTS SM Main Electronics Box Circuit Card Interface Control Document.

The Blackbody Controller has two connectors that are used to connect to the Blackbodies. The connector part number is (Positronix #) SDD26F4R200G. These are 26 pin socket high-density connectors with right angle (PWB mount) pins that connect to the circuit board. These connectors are listed in the GIFTS SM Main Electronics Box Circuit Card Interface Control Document. The maximum height of these connectors on the component side of the PWB is 0.485 inch. All other components meet the ICD limit of 0.419 inch.

The connector locations are defined in Appendix B of the GIFTS SM Main Electronics Box Circuit Card Interface Control Document and are listed below for reference only.

Board			Reference	Connector	Dimension from top of
Location	Board Number	Board Name	Designator	Center Line	board to first row of pins
		Blackbody			
3	28-0003	Controller	J1	Α	0.450"
3	28-0003	Blackbody Controller	J2	С	0.450"

* Guaranteed by Test

[^] Guaranteed by Design

5.4. Thermal Interface

The Ambient and Hot Blackbody are located on the SM Optics Bench and the Blackbody Controller is located in the SM Electronics Box. Each location (optics bench and electronics box) has a unique thermal environment.

5.4.1. Blackbody Thermal Interface

The Hot and Ambient calibration blackbodies (HBB and ABB) are mounted on a sliding platform. The sliding platform positions either the HBB or ABB in the calibration position. During calibration the back end of the Sensor Module is presented a view of the blackbody via a flip-in mirror.

The blackbody thermal environment is represented in the schematic shown in Figure 5.4.1. To simplify analysis of the interface, the complex surroundings are represented by equivalent surroundings defined by a cylinder 18" diameter x 9" tall. The cylinder axis lies along the central (calibration) blackbody position. The bottom of the cylinder (designated 'platform') lies in the plane of the blackbody mounting surface, and represents the blackbody sliding platform and optics bench. (The platform is mounted on and thermally linked to the optics bench.) The top of the cylinder (designated 'baffle') represents the fore optics primary and secondary baffles which lie above the blackbodies. The sides of the cylinder (designated 'ambient') represent the many components surrounding the blackbodies. The equivalent surrounding surfaces (baffle, ambient, and platform) are assumed to have uniform temperatures and emissivity ε =1. The sides of the two blackbodies are wrapped in a single MLI blanket with an emissivity ε =0.01-0.04.

The mirror mount is represented by a 3" x 10" rectangular surface that is 0.25" above the top of the blackbody enclosures. The mirror mount remains stationary while the blackbody platform slides to allow both blackbodies to be moved to the central (calibration) position. The mirror mount covers all three possible blackbody aperture positions, and has an emissivity ε =0.02-0.05. The mirror is represented by a 1.125" diameter circle in the mirror mount plane, aligned with the aperture of the blackbody in calibration position. During calibration, the mirror is assumed to be black (ε =1) at 0 K to represent the view to the SM cold optics. At all other times the mirror is assumed to have the same emissivity and temperature as the mirror mount.

Figure 5.4.1 Blackbody Thermal Environment Schematic

The blackbody conductive paths are to the platform (optics bench), and through the wiring harness which routes from the blackbodies to the platform, along the optics bench to its termination in the electronics box. The harness will be insulated from the platform and optics bench and covered with MLI, and will have a thermal resistance from the blackbodies to the electronics box in the range of 500-2000 K/W.

The blackbodies exchange radiation with the mirror mount and the surroundings (baffle, platform, and ambient). The baffle is subjected to large temperature swings during orbit, which will drive the temperature of the ambient surroundings. The resulting ambient temperatures are slightly less extreme than the baffle temperatures. The optics bench and electronics box temperatures will increase from start to end of the mission. Table 5.4.1 lists the worst-case temperatures of the environment under various operating conditions.

Instrument Mode	Normal – Mission Start		Normal – Mission End		Survival	
Baffle Condition	Hot	Cold	Hot	Cold	Hot	Cold
Baffle	300	1,40	300	140	300	140
Ambient	280	180	280	180	280	180
Platform	200	200	220	220	180	180
Mirror Mount	250	250	250	250	180	180
Electronics Box	250	240	280	270	223	223

Table 5.4.1 Environment Temperatures, K

* Guaranteed by Test

^ Guaranteed by Design

GIFTS Blackbody Subsystem Specification 8300-0004

During normal instrument operation the HBB and ABB are maintained at their respective nominal set point temperatures of 290 K and 255 K.

The heat flux imparted by the actual environment to the blackbodies will not exceed the flux imparted by the equivalent surroundings.

During normal instrument operation, the platform will provide a heat sink capable of absorbing 0.5 W from the blackbodies without exceeding the temperatures in Table 5.4.1. The combined conductive heat flow from the two blackbodies to the platform will not exceed 0.5 W. *^

5.4.2. Blackbody Controller Thermal Interface

The Blackbody Controller heat dissipation (see "electronics power dissipation" in table 4.0) is conductively coupled to the sides of the board to the EG&G Birtcher wedge-locks as specified in the GIFTS SM Main Electronics Box Circuit Card Interface Control Document.

6. Environmental Specifications

The Blackbody Calibration Subsystem will be subject to the following environmental conditions:

Controller Operating Temperature (Full accuracy): -40 to +30 °C * Controller Operating Temperature (Reduced accuracy): -55 to +50 °C * (Measured at PWB rails.)

Controller Non-operating Temperature: -65 to +70 °C ^ (Measured at PWB rails.)

Pressure: Vacuum to 1.05 Atm ^

Total Radiation Dose: 100 K Rad (Si) (Includes 2:1 safety factor) ^

Radiation Single Event Effects: Non-destructive, automatic reset within 10 seconds. ^

Mechanical Loading

Quasi-static Design Limit Load: 50 G's in each direction simultaneously

* Guaranteed by Test ^ Guaranteed by Design

	Loads due to Liftoff and Airloads			Loads due to MECO, pre- MECO, and Other			
	X	Y	Z	X	Y	Z	
Blackbodies	Lateral 13.00		9.75	Lateral 10.40		10.40	
Electronics (board in x-y plane)	5.20	7.80	7.80	5.30	8.01	10.40	

Launch Loads Exclusive of Random Vibrations (G)

Random Vibration Loads:

 Blackbodies (X, Y, Z)

 20 to 120 Hz + 6 dB/octave

 120 to 500 Hz
 0.080 G²/Hz

 500 to 2000 Hz
 - 6 dB/octave

 Composite:
 7.98 Grms

(Note controller is mounted in X-Y plane, long edge in X-direction.)

For analysis, the hardware must meet the design limit load. Alternatively, the launch and vibration loads are applied per the following:

Loads resulting from random vibration are combined with loads due to liftoff and airloads (does not include MECO, pre-MECO, and other) as follows:

Z-axis: Random loads (3σ) are linearly added to the launch loads.

X & Y axis: Random loads (3σ) are combined by RSS to the launch loads. The resulting loads are applied simultaneously in all three directions. As a separate load case, the MECO, pre MECO, and Other loads are applied simultaneously in all three directions.