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Final Report

OVER-ARCHING GOAL

The overarching goal was to prepare geostationary satellite atmospheric motion vectors
(AMV) for numerical model assimilation experiments and test for improvements in the
NAVY global numerical model (NOGAPS) forecasts of tropical cyclones (TC) using
targeting information provided by NRL-MRY. This was the primary motivation for this
investigation.

PRIMARY OBJECTIVE

Develop an AMV processing and data assimilation strategy to optimize positive impacts
on NOGAPS forecasts of TC tracks and intensity.

RESULTS: EXECUTIVE SUMMARY

Experiments were performed testing the impact of modifying the assumed
observation error for assimilating AMVs in the NRL Atmospheric Variational Data
Assimilation System (NAVDAS). A first experiment changed the observation error for
all Geostationary AMVs to be 1.5 times the model background error. This weighting is
based on comparisons with an adjoint-based impact parameter. A second experiment kept
the operational observation error settings for AMVs, but used experimental "expected
error" quality indices on CIMSS-produced AMVS to reject AMVs that were indicated to
have poor quality. A third experiment set the observation error of the CIMSS-produced
AMVs equal to the expected error indices.

All three experiments produce forecast differences that are overall slightly positive in
terms of forecast skill but with low statistical significance. The observation error ratio
experiment produced Northern and Southern hemisphere extra-tropical 500-hPa height
anomaly correlations that are slightly better than the control. The tropical 500-hPa height
anomaly correlations are slightly worse. For the expected error threshold experiment the
forecast impact in the southern hemisphere is slightly better than the control while the
northern hemisphere and tropical forecasts are slightly worse. The observation
error/expected error experiment produced very little difference from the control.
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1. Introduction

Geostationary satellite-derived Atmospheric Motion Vectors (AMVs) are used by

numerical weather prediction (NWP) centers around the world. Although their forecast

impacts are generally beneficial, the complexity of AMVs and their associated

observation errors make them challenging to assimilate. The AMVs operationally

assimilated in NAVDAS (the NRL Atmospheric Variational Data Assimilation System)

are produced by the University of Wisconsin's Cooperative Institute for Meteorological

Satellite Studies (CIMSS), the National Environmental Satellite Data and Information

Service (NESDIS), the U.S. Air Force Weather Agency (AFWA), the European

Meteorological Satellite Organization (EUMETSAT), and the Japan Meteorological

Agency (JMA). AMVs valid within a six-hour time window around the NAVDAS

analysis time are ingested for assimilation. To reduce the data volume, these AMVs are

superobbed. AMVs from different sensors, satellites, and processing centers are all

superobbed separately. Details of the superobbing scheme are presented in Pauley (2003).

AMVs have a large and beneficial impact on NOGAPS (Navy Operational Global

Atmospheric Prediction System) forecast skill. For example, as described in Langland

and Baker (2004), AMVs produce the second-largest reduction in NOGAPS 24-hr

forecast error, following rawinsonde observations in the Northern Hemisphere and

Advanced Microwave Sounding Unit (AMSU-A) observations in the Southern

Hemisphere. Although, on average, their impact is beneficial (e.g., their assimilation

reduces model forecast error), the impact of individual AMVs (and other types of

observations) has a statistical distribution that includes both beneficial and non-beneficial

forecast impacts. This distribution of impacts is due to our inability to exactly specify the

2



true errors of the observations and the background (model first-guess), which are

combined in the data assimilation process to produce the analysis or initial conditions. If

these errors can be more precisely tuned, the observations will have a greater beneficial

impact on model forecast skill.

This report will describe three NOGAPS model forecast experiments in which we

adjust the quality control and specified observation errors for AMV assimilation into

NAVDAS. In Section 2 we use information from the observation impact procedure

developed by Langland and Baker (2004). In Section 3, we use a newly available AMV

quality indicator, referred to as the "expected error", and conduct two forecast impact

experiments. The results of these three experiments are then summarized and followed by

discussion and ideas for future efforts.

2. Adjoint-based Observation Impact Results

Langland and Baker (2004, LB04 hereafter) describe a procedure to estimate the

impact of individual observations on a measure of short-range forecast error. This method

is useful for determining which observations improve the forecast, and regional patterns

in observation impacts on the forecast. The LB04 observation impact equation is:

&g = (y- xb), KL af + (1)

where y-Hxb is the innovation (difference between the observation and the

background, and are, respectively, the sensitivity of forecast errors on the
axa OXb

analysis and background model trajectories, and KT is the transpose of the Kalman gain

matrix represented by the data assimilation procedure. The quantity "J" is an energy-
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weighted forecast error norm that includes temperatures, winds, moisture, and surface

pressure from the surface to about 300 hPa. In these results, f represents a 24-hour

forecast. The K ) brackets represent a scalar inner product. The observation impact 6el isf

an approximation of the increase or decrease in forecast error associated with the

assimilation of observations. In this context, negative values of Me imply a forecast error

reduction, which is a "beneficial" impact. We can use M to represent the impact of all

observations, or any arbitrary subset of observations. This adjoint-based method

provides information about observation impact that is difficult or impossible to obtain

from conventional data denial experiments.

Using the LB04 method, observation impact values were calculated for 0000 UTC

analyses from 3-10 July 2007, and include all geostationary AMV data used in

NAVDAS operations. Figure 1 and Figure 2 (top panels) shows the observation impact

sum binned as a function of wind component (u or v) speed (Figure 1) and wind direction

(Figure 2). The lower panels of each figure show the corresponding number of

observations in each bin. These figures show that the total impact is fairly well correlated

with the number of observations in each bin. Thus, there is no strong bias for lower or

higher wind speeds, or winds from any particular direction to have larger impact on

short-range forecast skill.
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Figure 1: Observed AMV wind component value (m s-1) vs. summed observation impact (top

panel) and number of observations (lower panel).

Impact Sum Binned by Wind Direction
0

E

V: -0.4

--0,6

0 50 100 150 200 250 300 350
Wind Direction

2 5 -

1.5

z 0,5-
0

0 50 100 150 200 250 300 350
WInd Direction

Figure 2: Observed AMV wind direction (degrees) vs. summed observation impact (top panel)

and number observations (lower panel)
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Figure 3: Observed AMV latitude (y-axis) vs. summed observation impact (top panel) and

number of observations (lower panel). AMVs have the largest impact just south of the equator,

although there are more observations just north of the equator. This may be explained by the

larger number of other upper-air observations (e.g., radiosondes, aircraft observations) in the

Northern Hemisphere that reduces somewhat the impact of AMVs.
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In figures 3-5 we show AMV observation impact and observation counts as

functions of, respectively, observation latitude, longitude, and pressure. Figure 3

illustrates that the maximum observation impact is near 100 S, with a secondary peak

near 100 N latitude. Although the largest number of AMV observations is near 100 N,

there are also more competing types of upper air observations (.e.g, radiosondes, aircraft)

north of the equator, which reduces the total impact of the AMVs. Thus, the peak impact

of AMV observations occurs just south of the equator, where AMVs contribute

proportionately more to the analysis.

As a function of longitude (Figure 4), the observation impact is generally proportional

to the number of observations, with a peak in the Atlantic basin, near 450 W. The large

number of AMV observations here is probably caused by an overlap in coverage

provided by GOES-E and Meteosat-9.

The plot of AMV impact as a function of pressure (Figure 5) shows several important

features. The AMVs impact the forecast in two regions: in the lower troposphere near

850-hPa and near the level of the upper tropospheric jet streams near 400-hPa. The 850-

hPa maximum is slightly above the level (900 hPa) where the number of lower

tropospheric AMVs is largest, and the 400-hPa slightly below the level (300-hPa) where

the number of upper tropospheric AMVs is largest. As AMV observation error is soley a

function of pressure, this result suggests that the specification of observation and

background errors in NAVDAS is not optimal at certain levels. Specifically, it appears

that AMVs at 300-hPa and 900-hPa should have larger beneficial impact than is shown in

Figure 6.
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Figure 4: Observed AMV longitude vs. summed observation impact (top panel) and number of

observations (lower panel).
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Figure 5: Observed AMV pressure vs. summed observation impact (top panel) and number of

observations (lower panel). Peak impacts occur at about 850 hPa and 400 hPa.
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Data assimilation procedures create analyses of atmospheric fields by blending

information from the background with new observations. An observation's influence on

the analysis is determined largely by the ratio of the assumed error of that observation

with the assumed error of the background (a short-range model forecasts) at the

observation location. Observations that are believed to be more accurate (e.g., smaller

observation error) receive more weight than do less accurate observations. In NAVDAS,

the assumed error of wind observations is a function of pressure level (see Figure 7). The

true observation and background errors are unknown, so a large fraction of observations

consequently produce either too much or too little influence on the analysis.

It is useful to examine the correlation of observation impact with the assumed

observation and background errors. Figure 6 shows the summed AMV observation

impact plotted with the ratio of the assumed observation error ob and the assumed

background error Ubk. This ratio is Aob = 2 b . The AMV observation impact is most
Ubk

beneficial when A,b = 1.5, a ratio of AMV observation error and NOGAPS background

error that is close to "optimal" for the current NAVDAS. Why this is so needs to be

explored further. Slightly more observations have A,,, =1.4, but these observations have

less beneficial impact, even though they are assumed to be more accurate relative to the

background. This suggests that the observation error for these AMVs may be

underestimated or over-estimated. There are also larger numbers of observations for

which Abb > 1.6, but again their summed impact is again less beneficial than those for

All = 1.5. As observation error increases, they receive less weight in the data assimilation
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procedure, and their impacts should become smaller. Note that Cob applies to the

superobbed AMV observations not the individual AMVs.
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Figure 6: Ratio of assumed AMV observation error / background error vs. summed observation
impact (top panel) and number of observations (lower panel). Observations with the most
beneficial impact have observation errors that are 1.5 times as the value of the background error.

3. Observation and Background Error Ratio Experiment (Exp 1)

In this section we describe an experiment to test the hypothesis that NOGAPS

forecasts will be improved if AMV observation errors are adjusted to impose a ratio of

A,b = 1.5. The current operational AMV observation errors are shown as red circles in

Figure 7 as a function of pressure. The minimum observation error is 2.8 ms-1 at the low

levels and increases to a maximum of 5.2 ms-1 above 300 hPa. The green circles represent

the observation errors that result when Aob = 1.5, retaining the operational values of the
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assumed background wind error. At most pressure levels, this change implies small

reductions (< 1 ms-1) of assumed AMV observation error. However, there are small

increases in observation error near 400 hPa and from about 800-950 hPa.

New and Old Observation Errors vs. Pressure
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200 Proposed Observation Error

300
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- 500
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Figure 7: AMV observation errors as a function of pressure. The red circles are the operational

NRL AMV observation errors. The green observation errors are the observation errors that result

if the observation error equals 1.5 times the background error.

In this experiment two data assimilation and forecast cycles are run, daily, from I

April to 30 April 2007. We use all NOGAPS operational observations, except for the

substitution of special CIMSS AMVs that include an "expected error quality indicator"

(see Section 4). The control forecast uses the operational AMV observation errors. The

experimental forecast uses the exact same set of observations as the control run, but

changes the assumed AMV observation error so that 2 ob = 1.5. This change is imposed
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for all AMVs in the global domain, at all pressure levels. The forecast impact results of

this experiment are described in Section 7.

4. AMV Quality Indicators and Expected Error Estimates

As described above, specifying the appropriate observation error is critical to data

assimilation and forecast quality. Specifying it correctly for AMVs, however, is relatively

difficult. The derived nature of the product using multiple satellite images, along with

assumptions about background winds provided by forecast models makes estimating the

true error of these observations difficult. It has also been shown that AMV observation

errors are spatially correlated, and this complexity is not handled well by current

variational data assimilation procedures.

Traditionally, AMV producers have not estimated the observation error directly;

Instead, they assign normalized quality indicators to assess whether a particular AMV is

"good" or not. Operational AMV producers generate two objective methods: the

recursive filter (RF) method (Velden et al 1998) and the automatic quality indicator (QI)

method (Holmlund 1998). Both techniques assign a normalized indicator that measures

the vector's fit to its neighbors, consistency, and fit to a background model (Velden et al

2005).

Recently, CIMSS has been experimenting with a quality indicator derived by

LeMarshall et al (2004). This indicator, called the "expected error" (EE), linearly

regresses the predictors that make up the QI along with additional vector and model

information against co-located AMV - rawinsonde differences. A list of the regression

components and values for GOES-12 AMVs for various channels is provided in Table 1.
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Predictor IR Visible Water-Vapor Shortwave IR

Constant 10.1 2.92 9.33 8.85

QI Speed Test -0.180 -2.02 -0.366 1.86

QI Direction Test -0.36 -1.83 -0.224 1.72

QI Vector Test -0.99 1.88 -0.739 -2.66

QI Buddy Test -1.83 -1.72 -1.72 -2.02

QI Forecast Test -3.02 -1.90 -3.56 -1.45

AMV Speed 0.092 0.183 0.101 0.06

AMV Pressure -3.14x10 3  3.01x10 -3  -9.28x10 4  -5.5x10 3

Model Wind Shear 0.405 0.012 0.022 0.091

Model Temp. Gradient 0.030 -0.025 0.0290 0.031

Table 1: Expected Error linear regression coefficients for Northern Hemisphere GOES- 12

Infrared, visible, water vapor, and shortwave IR AMVs.

Figure 8 and Figure 9 show two measures of the EE's skill and highlight the two ways

it will be used in this study. Infrared AMVs from GOES-12 are co-located with

rawinsondes. The results shown below were generated from AMVs collocated with

rawinsondes from September - November 2007. The EE's performance varies little from

month to month. Box-and-whisker plots of AMV-rawinsonde distributions grouped by a

central expected error bin value (i.e. a bin of 6 ms-1 contains AMVs that have expected

errors between 5.5 ms-1 and 6.4 ms-I) are shown in Figure 8. The 1-1 line is shown for

comparison. If the EE were a perfect predictor all of the AMVs would fall on this line.

13



Although many of the AMVs do not, most of the mean and median values of the

distributions do fall fairly close. The mean and medians of the AMV - rawinsonde

difference distributions generally increase with increasing EE. Analyzing the EE in this

way suggests that it has skill at estimating AMV error compared to rawinsonde error.

Even if the EE were a perfect correlative measure of AMV - rawinsonde differences,

however, it would only be an approximation of the true AMV observation error. The EE

does not take into account rawinsonde measurement or representative-ness error between

rawinsondes and AMVs, nor does it account for errors introduced by imprecise

collocations.

NHIR Expected Error Distribution
34 -

32 -0 M
30

, 28

E 26
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Figure 8: Box and whisker plots showing the distributions of actual AMV -RAOB (rawinsonde)

differences as binned by a central expected error. The lower line of the box, the red line in the

middle of the box, and the top line of the box represent the lower quartile, the median, and the

upper-quartile of the distributions, respectively. The red crosses are outliers. The average (green

circle) and rms (red square) values for each distribution are also shown. A 1-1 dotted line is

shown for comparison.
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As discussed in Section 3, estimating the observation error is important. But the EE

can also be used to decide whether a given observation should be assimilated or not.

Figure 9 bins the AMV - rawinsonde differences by the maximum EE rather than a

central value as in Figure 8. The 1-1 line is also shown. This figure shows that errors

decrease as the maximum threshold decreases. On average, however, they do not

decrease by an appreciable amount until the EE thresholds drop below about 7 ms1.Most

of the EEs are below this value (see Figure 10). As the threshold gets lower, the error

distributions move toward lower errors as well, reflecting the EEs skill at thresholding

out bad AMVs.

* " 34 - ver ge I

E 32 - -
" 30

Wo 28
Q 26
0 24

ca20 -1
0 18
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, I I III I I
3 4 5 6 7 8 9 10Expected Error Maximum (ms1 )

Figure 9: As in Figure 8, except the box plots represent the AMVs that have the maximum
expected error value shown in the x-axis. As the expected error maximum threshold decreases,

the errors generally decrease, particularly when the threshold value decreases below about 7 ms-1.
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Figure 10: (Top plot) Expected Error histograms (x 104) for GOES-E, GOES-W and Metosat-9

AMVs for April 1-2 and April 15-16, 2007. (Bottom plot) Cumulative distribution for the same

dataset.

The results shown in Figure 8 and Figure 9 are confined to only those AMVs that are

co-located with rawinsondes. ANMVs not necessarily matched with rawinsondes are

shown in Figure 10: a histogram and cumulative probability distribution of the EE from

four days of AMVs during the month of April, 2007. The average EE is about 4 ms-I and

most of the ElEs are below 8 ms-1. These results are reasonably consistent with the results

for AMVs co-located with rawinsondes.
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5. EE Threshold Experiment (Exp 2)

The AMV EE information can be used to design additional data assimilation and

forecast experiments. In Experiment 2 we use the EE to define AMV quality threshold

values and withhold poor-quality AMVs from being assimilated. If the threshold value is

set too tight, then too many AMVs are rejected and the experiment will not have much

impact. If the threshold is set too loose, then too few AMVs are rejected, and the analysis

may be degraded. Another consideration is that the EE is a function of AMV speed.

Faster AMVs should therefore be given a higher EE tolerance. Based on an analysis and

tests with NRL's superob procedure, the threshold values in Table 2 were selected For

Experiment 2.

AMV Speed EE Threshold

Speed < 50 ms-1  EEs > 7.5 ms-1 rejected

Speed > 50 ms -' EEs > 15 ms-' rejected

Table 2: EE Thresholds used in Experiment 2

In this experiment, the control forecasts use operational quality control procedures

and observation error values. The EE threshold forecasts use the values in Table 2 to

remove selected AMVs before the assimilation procedure. The forecast impact results of

this experiment are described in Section 7.

These EE thresholds were applied to a special set of CIMSS AMVs from the period

of 1 - 31 April 2007, which include the expected error information. Note that the CIMSS

winds are only a subset of all AMVs in the global domain. How much of a subset? An
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example of typical AMV numbers is shown in Table 3. The table shows a sample of

AMV superobs generated from AMVs from each regional data provider and compares

them to superobs generated from AMVs produced at CIMSS. Although the counts are

from July, 2007, these numbers are not likely to vary appreciably from month to month.

With the exception of Meteosat-9, CIMSS produces fewer AMVs than the other

producers. This difference may be to due to quality control differences between the

producers. As only the CIMSS AMVs are affected by using the expected error, the

numbers in the CIMSS column represent the number of observations that will be affected

by the thresholding and the subsequently described expected error-observation error

experiment. Keep in mind, however, that the geographic distribution between CIMSS and

the other producers is nearly identical. Thus, modifying only the CIMSS AMVs should

not have a geographic bias.

NESDIS CIMSS

GOES 350850 313884

EUMETSAT CIMSS

Met-7 120414 76754

EUMETSAT CIMSS

Met-9 148154 355134

JMA CIMSS

MTSAT 119546 102068

Others CIMSS

Total 738964 847840

Table 3: Number of AMV superobs (all channels) from July 2007 generated from AMVs by each

satellite from CIMSS and the respective national producer. Although CIMSS AMVs represent the

majority of total AMVs, the modifications in experiment 2 and 3 are not made to all of the

available AMVs.
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6. EE and Observation Error Experiment (Exp 3)

In Experiment 3, all of the observations are assimilated as in the control, but the EE

replaces the operational observation error for all CIMSS AMVs. Figure II is a scatter

plot of operational AMV observation error versus the EE. For most AMVs the EE is

somewhat larger than the operational error, so that the observation will receive somewhat

less weight in the analysis. This is particularly true for AMVs with higher speeds that

generally have higher EE. Some AMVs, however, have particularly low EE. These low

EE AMVs are generally slow in speed, and in the low levels.
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Figure 11: Scatter plot of operational AMV observation error and "expected error" for AMVs

used in Experiment 3. Color scale corresponds to AMV speed.
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Experiment Description

1. Observation and Background Error Observation errors for all AMVs are modified so that

Ratio Experiment the observation/background error ratio is 1.5

2. Expected Error Quality Threshold CIMSS-produced AMVs are rejected if their

Experiment expected errors are above set thresholds

3. Expected Error as Observation Observation errors for CIMSS-produced AMVs are

Error Experiment set to expected error.

Table 4: Summary of data impact experiments.

7. Experiment Results

This section describes the forecast impact results of Experiments 1, 2, and 3 that are

configured as in Table 4.

7.1 Experiment 1- AMV Observation and Background Error Ratio

Modifying the AMV observation errors so Ao = 1.5 produced neutral to slightly

positive impact. Figure 12 shows the 500-hPa anomaly correlations for the Northern

Hemisphere, Southern Hemisphere, and the Tropics. None of the anomaly correlation

differences are statistically significant. On average, the Northern Hemisphere and

Southern Hemisphere experiments were slightly positive (compared to the control) for

long forecast times while the tropical result was slightly negative in terms of 500-hPa

anomaly correlation.
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Figure 12: Experiment #1 anomaly correlation of 500 hPa height. Northern Hemisphere (top),
tropics (middle) and SH (lower). Control forecasts (red) and forecasts with modified observation

error (green). The anomaly correlation differences are not statistically significant, although

forecast skill is slightly improved outside the tropics with the modified observation error.
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Level 24-hour 48-hour 72-hour 96-hour 120-hour

850 hPa 0.015 0.037 0.046 0.056 0.052

700 hPa -0.028 -0.011 0.007 0.017 0.008

500 hPa -0.057 -0.053 -0.042 -0.021 -0.04

250 hPa -0.108 -0.147 -0.132 -0.117 -0.045

Table 5: Differences of root mean square (RMS) wind vector forecast error between the control

and modified observation error forecasts in Experiment 1, for the tropics (20'S-20'N). Positive

numbers indicate that forecasts with modified observation error have lower forecast error.

Differences in bold are statistically significant with at least 90% confidence.

Experiment 1, however, did produce statistically significant results in terms of root

mean square wind forecast error differences (

Table 5), at least in the tropical band from 20'S to 20'N. In

Table 5, positive numbers indicate that the RMS forecast error of the modified

observation error forecasts is lower than in the control forecasts. As seen in

Table 5, the forecast results differ substantially by level. In general, forecast errors

were reduced below 700 hPa, and increased to some extent above 500 hPa by changing

the observation error. As forecast length increases, the forecasts with modified

observation errors become somewhat more skillful (or less unskillful), although these

differences are not statistically significant. Why is the tropical forecast impact different

than the extra-tropical forecast impact in this experiment? We might hypothesize that

wind observations impact the tropics more than the extra-tropics. Another clue may be

seen in Figure 13. This plot shows the same quantities as Figure 6, except for the Tropics
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(20'N - 20'S). When the entire global domain is considered, the optimal ratio of

observation error to background error appears to be about 1.5. However, for the tropics,

the ratio appears closer to 1.4, suggesting that the optimal ratio of observation error to

background error might be defined as a function of latitude as well as pressure.
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Figure 13: As in Figure 6 except for the tropics (20°N through 20'S). The maximum forecast

error reduction occurs when the AMV observation error is 1.4 times as large as the background

error.
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7.2 Experiments 2 and 3- EE Threshold and Observation Error Experiments

Results from the EE in Experiments 2 and 3 are essentially neutral in terms of

forecast skill. Figure 14 and Figure 17 show the 500-hPa height anomaly correlations

results for these two experiments, in which the control forecasts and EE forecasts are not

statistically different. The EE threshold experiment (Figure 14) shows a slightly stronger

forecast impact than the EE-observation error experiment (Figure 17).

At forecast times longer than about 84hr, the EE-threshold Southern Hemisphere

height anomaly correlation is slightly better at 500-hPa and 1000-hPa (not shown). The

Northern Hemisphere control forecasts are slightly better than the EE-threshold forecasts.

A time series for Northern and Southern Hemisphere 120-hr rms forecast errors of

250 hpa heights in Experiment 2 is shown in Figure 15. The EE-threshold forecasts have

a lower mean RMS error than the control forecasts in the Southern Hemisphere (0.670 m

lower) and a slightly higher mean RMS error than the control in the Northern Hemisphere

(0.636 m higher). Differences in the Northern Hemisphere wind field (not shown) are

also worse (but not significantly worse) than the control. The 120-hr tropical wind vector

error time series (Figure 16) also shows the control forecast being slightly better than the

experiment (0.073 msl). These differences are consistent with the fact that changing the

AMV assimilation procedure causes greater differences in the Southern Hemisphere,

where AMVs comprise a relatively larger fraction of the total available observations.
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Figure 14: Experiment #2 anomaly correlation of 500 hPa height. Northern Hemisphere (top),

tropics (middle), and SH (lower). Control forecasts (red) and EE-threshold forecasts (green). The

anomaly correlation differences are not statistically different, although the southern hemisphere

forecast skill is slightly improved with the EE-threshold.
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250 hPa Height 120hr RMS Errors
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Figure 15: Time series of 250 hPa 120-hr RMS height error for the control forecasts (red) and

EE-threshold forecasts (blue). The mean error of the EE-threshold forecasts is slightly lower than

the mean control error in the Southern Hemisphere and slightly higher in the Northern

Hemisphere, although these differences are not statistically significant. The Northern Hemisphere

vector RMS (not shown) is consistent with the height error.
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Tropical 250 hN Vector 120 hr RMS Errors
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Figure 16: Time series of 250 hPa 120-hr RMS height errors for the control forecasts (red) and
EE-threshold forecasts (blue). The EE-threshold forecasts are, on average, slightly worse than the

control forecasts, although the difference is not statistically significant.
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Figure 17: Time series of 250 hPa 120-hr RMS height errors for the control forecasts (red) and
EE-threshold forecasts (blue). The EE-threshold forecasts are, on average, slightly worse than the

control forecasts, although the difference is not statistically significant.
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Figure 18: Experiment #3 anomaly correlation of 500-hPa height. Northern Hemisphere (top),

tropics (middle) and SH (lower). Control forecasts (red) and EE-observation error forecasts

(green). The anomaly correlation differences are not statistically different.
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In Experiment #3, differences between the EE-observation error forecasts and the

control forecasts are relatively small. Figure 19 shows the 250-hPa wind vector RMS

forecasts error for the Tropics. The control and EE-observation error forecast differ very

little. Similar results are found at other pressure levels and forecast times.
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Figure 19: Time series of 250 hPa 120-hr RMS height errors for the control forecasts (red) and

EE-observation error forecasts (blue). The EE-observation error forecasts are, on average, slightly

better than the control forecasts, although the difference is not statistically significant.

8. Summary and Future Work

The assimilation of atmospheric motion vectors (AMVs) provides large beneficial

impact to NAVDAS analyses and NOGAPS forecast skill. At present, only rawinsonde

profiles and AMSU-A radiance observations provide larger contributions to NOGAPS

forecast skill, as measured by a global forecast error norm (Langland and Baker 2004).

The current assimilation, however, of AMVs (and other observation types) should not be
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considered optimal. A major challenge is to provide better estimates of AMV observation

error, since this affects the relative weight assigned to the observation versus the

background in the data assimilation procedure. Improper specification of observation

error can result in degradation of the analysis and poorer forecast quality.

Currently in NAVDAS, the AMV observation error varies only by observation

pressure. The observation error is not a function of latitude, longitude, or observed wind

speed. This report describes three experiments that test modified assumptions for AMV

observation error and quality control. All three experiments produce forecast differences

that modestly impact the forecast skill, but with low statistical significance.

Result 1: Observation and Background Error Ratio Experiment

The AMV observation error is specified at 1.5 times the background error for all

superobs in the global domain. The northern and southern hemisphere extra-tropical 500-

hPa height anomaly correlations are slightly better than the control. The tropical 500-hPa

height anomaly correlations are slightly worse.

Result 2: Expected Error Threshold Experiment

CIMSS-produced AMVs are quality controlled using the EE thresholds described in

Table 2. The AMVs produced by the other centers are left unchanged. Forecast impact in

the southern hemisphere is slightly better than the control while the northern hemisphere

and tropical forecasts are slightly worse.
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Result 3: Expected Error Observation Error Experiment

Observation errors for the CIMSS AMVs are set to the respective EE values. The

modified and control forecasts differ very little.

These results provide some clues and suggest that additional experimentation is

required to improve the current assimilation of AMVs in the NAVDAS. Larger forecast

improvements may require changes to AMV super-ob procedures or more significant

changes to AMV observation errors that affect large fractions of the AMVs. For

example, we note that Experiment 1, which modified the observation errors of all of

AMVs, also produced the larger forecast impact. In contrast, the two EE experiments

affected only those AMVs produced by CIMSS, and thus had relatively smaller forecast

impacts. Future experiments might use EE estimates for all AMVs in the global domain.

It might also be useful to introduce a latitude-dependence in the AMV observation

error, since AMV observation representativeness may be different in the tropics versus

the extra-tropics. The AMV threshold experiment can be modified to make the threshold

a linear function of speed rather than using simple cut-off values. A linear threshold

would allow additional high-speed AMVs to be assimilated, with tighter restrictions for

slower AMVs. The results in Exp 1 clearly indicate some correlation with pressure. The

1 .5-modification helped the low level AMV assimilation but hurt the upper levels. This

discrepancy needs further investigation. It would also be of interest to calculate the

adjoint-based observation impact as a function of the AMV EE. Then, one could better

optimize the error threshold to produce the most beneficial selection of AMVs for actual
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assimilation. The goal of future experiments is to isolate the fraction of AMVs

assimilated in NAVDAS that improve the analysis and forecast quality.
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