

Antarctic Automatic Weather Station Data for the calendar year 2002

by

Linda M. Keller George A. Weidner Charles R. Stearns Jonathan E. Thom Matthew A. Lazzara

Space Science and Engineering Center University of Wisconsin 1225 W. Dayton St. Madison, Wisconsin December, 2008

Antarctic Automatic Weather Station Data

For The Calendar Year

2002

by

Linda M. Keller

George A. Weidner

Charles R. Stearns

Jonathan E. Thom

Matthew A. Lazzara

Space Science and Engineering Center

University of Wisconsin

1225 W. Dayton St.

Madison, Wisconsin

December, 2008

TABLE OF CONTENTS

Page

1. Introduction	1
2. Data Transmission	1
3. AWS Identification and Location	1
4. AWS Data Summaries	10
4.1. Monthly Data Summaries	10 11
D-10	11
	11
Donie C II	10
Full Maluli	12
Cape Defilsoff	12
	12
Dylu Mount Sinlo	12
Thoroso	12
Flizabath	10
Elizabelii	10
	14
Hany	14
EIII	14
	15
Switnindank	15
	15
Ferrell	16
Pegasus North	16
Pegasus South	16
Minna Bluff	17
	17
	17
Windless Bight	18
Herbie Alley	18
Cape Spencer	18
Cape Bird	19
	19
Whitlock	19
Possession Island	20
Manuela	20
Marilyn	20
Schwerdtfeger	21
Gill	21
Lettau	21
Elaine	22
Larsen Ice Shelf	22
Butler Island	22
Uranus Glacier	23
Limbert	23
Racer Rock	23
Bonaparte Point	24
Sky-Blu	. 24

	Kirkwood Island Dismal Island Clean Air (South Pole) Henry Nico Relay Station Dome Fuji	24 25 25 25 26 26 26
	Mizuho	27
	4.2. Three Hourly Data Summaries	28
5.	AWS Calibration	28
	 5.1. Temperature	28 28 28 29 29
6.	AWS Operations Summary for 2001	29
	6.1. AWS Performance 6.2. AWS Antarctic Field Activities	29 31
7.	Global Telecommunications System	32
8.	Data Availability	33
9.	Acknowledgments	34

1. INTRODUCTION

Automatic weather station (AWS) units are deployed to collect Antarctic surface weather observations in support of specific meteorological research projects as well as operational activities in Antarctica. The 2002 network consisted of 52 installed AWS units providing observations on the Ross Ice Shelf, east of the Transantarctic Mountains and north of McMurdo to the Adelie Coast, along the Antarctic Peninsula, West Antarctica, East Antarctic, and climatological locations such as the South Pole. Each unit measures air temperature, wind speed, and wind direction at the top of the unit's tower at a nominal height of three meters and air pressure at the electronics enclosure (Figure 1). Some AWS units also measure the relative humidity at three meters and vertical air temperature difference between 0.5 and 3 meters. Measurement heights relative to the actual surface at the site are nominal due to snow accumulation around the AWS unit.

2. DATA TRANSMISSION

The transmitted AWS data are received and stored by the Data Collection System on the NOAA series of polar orbiting satellites. The data are retransmitted by the satellite for use in the High Resolution Picture Transmission (HRPT) broadcast at McMurdo, Antarctica. The data are processed into scientific units and are available for local use. The complete data set is received at the University of Wisconsin-Madison from CLS America (Service ARGOS), Largo, Maryland, for processing and distribution to the users.

3. AWS IDENTIFICATION AND LOCATION

Site location is defined by the latitude and longitude which is determined by various methods: sun shots, angles to geographical features, aircraft data, ice breaker data, the platform location system of CLS America (Service ARGOS), and the Global Positioning System. AWS elevation is obtained by barometry and Global Positioning System (GPS) and should be correct to within +/- 5 meters. Site names were introduced for convenience. Table 3.1 lists the site name, ARGOS identification number, latitude, longitude, elevation, start date for the site, and the World Meteorological Organization (WMO) number for the site. Figures 2, 3, 4, and 5 show the locations of the AWS units in the Antarctic for 2002.

The ARGOS identification number (ID) is used to identify the data sets distributed to the users. AWS units are sometimes moved from one location to another, and as a result, the ID at a given site may change from year to year. The site name does not change. Table 3.2 lists the site name with the ARGOS ID, the site start date, and the ID start and stop dates.

Figure 1. Layout of the AWS unit used in the Antarctic. The installed AWS unit has a 3-meter tower with a horizontal boom supporting the antenna, aerovane for measuring wind speed and direction, air temperature resistance thermometer, upper thermopile for measuring vertical air temperature difference, and the relative humidity sensor. The electronics enclosure is mounted at the midpoint of the tower. The gel cell batteries are placed at the tower base. The solar panel, located near the tower top, faces north. The Acoustic Depth Gauge (ADG) is installed on some of the AWS units to measure snow depth for precipitation studies.

A۱	NS site name	geographic location	and elevation site sta	art date and WMC	number for 2002	
Site Name	ARGOS	ID Lat (deg.)	Long (deg)	Flev (m)	Site Start Date	WMO
	/		Long. (dog)		one oran bare	No.
			Adelie Land			
D-10	8914	66.71°S	139.83°E	243	08 Jan 80	89832
D-47	8986	67.397°S	138.726°E	1560	24 Jan 83	89834
Dome C II	8989	75.121°S	123.374°E	3250	12 Dec 95	89828
Port Martin	8909	66.82°S	141.39°E	39	19 Jan 90	
Cape Denison	8988	67.009°S	142.664°E	31	20 Jan 90	
Penguin Point	8910	67.617°S	146.180°E	30	24 Dec 92	89847
			West Antarctica			
Byrd Station	8903	80 007°S	119 404°W	1530	05 Feb 80	89324
Mount Sinle	8081	73 108°S	127 052°W	230	20 Feb 02	80327
Theresa	21358	84 500°S	115 811°W	1463	20 1 CD 32 29 Nov 94	80314
Flizabeth	21360	82 607°S	137 078°\\/	510	30 Nov 94	80332
Brianna	#8031	83 880°S	137.070 W	525	30 Nov 94	03332
Harry	8000	83 0035	121 303\//	945	20 Nov 94	
Frin	21262	03.0033 04.004°S	121.39300	945	29 Nov 94	
Cinia Domo	21303	04.904 3 04.656°C	120.020 VV	990	29 NOV 94	00245
Siple Donie	0930	01.000 5	140.//J VV	000	21 Jan 97	09345
Swithinbank	21355	01.201 5	120.177 VV	959	10 Jan 97	
			Ross Island Regio	n		
Marble Point	8906	77.439°S	163.754°E	108	05 Feb 80	89866
Ferrell	8929	77.910°S	170.817°E	45	10 Dec 80	89872
Pegasus North	21357	77.952°S	166.500°E	8	23 Jan 90	89667
Pegasus South	8937	77.99°S	166.576°E	10	14 Jan 91	
Minna Bluff	8935	78.554°S	166.691°E	895	22 Jan 91	89768
Linda	8919	78.464°S	168.382°E	47	21 Jan 91	89769
Willie Field	21364	77.865°S	167.017°E	40	25 Jan 92	
Windless Biaht	8927	77.728°S	167.703°E	61	09 Dec 98	
Herbie Allev	8697	78.10°S	166.67°E	30	11 Jan 99	
Cape Spencer	#8695	77.97°S	167.55°E	30	11 Jan 99	
Cape Bird	8901	77.224°S	166.440°E	42	28 Jan 99	
Laurie II	21360	77.549°S	170.817°E	30	01 Feb 00	
			Occan Islanda			
W/bitlook	9007	76 14400		074	01 lon 00	00065
	0907	70.144 5	100.392 E	2/4		09000
Possession is.	0904	71.0915	171.210 E	30	29 Dec 92	09079
Manuela	8905	74.946 5	163.687 E	78	06 Feb 84	89864
			Ross Ice Shelf			
Marilyn	8934	79.954°S	165.130°E	75	16 Jan 84	89869
Schwerdtfeger	8913	79.904°S	169.973°E	60	24 Jan 85	89868
Gill	8911	79.985°S	178.611°W	55	24 Jan 85	89376
Lettau	8908	82.518°S	174.452°W	55	29 Jan 86	89377
Elaine	8915	83.134°S	174.169°E	60	28 Jan 86	89873

Site Name	ARGOS ID	Lat. (deg)	Long. (deg)	Elev. (m)	Site Start Date	WMO No.
			Antarctic Peninsula			
Larsen Ice	8926	66.949°S	60.897°W	17	07 Feb 83	89262
Butler Island	8902	72.207°S	60.160°W	91	01 Mar 86	89266
Uranus Glacier	8920	71.43°S	68.93°W	780	06 Mar 86	89264
Limbert	8925	75.422°S	59.851°W	40	30 Nov 95	89257
Racer Rock	8947	64.067°S	61.613°W	17	15 Oct 89	89261
Bonaparte Pt.	8923	64.778°S	64.067°W	8	05 Jan 92	89269
Sky-Blu	8917	74.792°S	71.488°W	1556	07 Feb 99	89272
Kirkwood Island	8930	68.340°S	69.007°W	30	26 May 01	
Dismal Island	8932	68.087°S	68.825°W	10	27 May 01	
			High Polar Plateau			
Clean Air	8987	90.00°S		2835	29 Jan 86	89208
Henry	8985	89.011°S	1.025°W	2755	26 Jan 93	89108
Nico	8924	89.000°S	89.669°E	2935	26 Jan 93	89799
Relay Station	8918	74.017°S	43.062°E	3353	01 Feb 95	89744
Dome Fuji	8904	77.31°S	39.70°E	3810	04 Feb 97	89734
Mizuho	21359	70.70°S	44.29°E	2260	07 Oct 00	

* New sites started during 2002 # New ARGOS ID for 2002 at the site

Figure 2. Antarctic automatic weather station locations during 2002 identified by the site name. Area around Ross Island is shown in Figure 3. Adelie Coast area is shown in Figure 4. Antarctic Peninsula is shown in Figure 5.

Figure 3. Location of Antarctic automatic weather stations in the vicinity of Ross Island, Antarctica during 2002.

Figure 4. Location of Antarctic automatic weather stations along the Adelie Coast during 2002.

Figure 5. Location of Antarctic automatic weather stations along the Antarctic Peninsula during 2002.

 Table 3.2

 2002 Antarctic AWS site name, ARGOS identification number (ID), site start date, ID start date, and ID stop date if occurring in 2002.

Site	ARGOS ID	Site Start Date	ID Start	ID Stop
D-10	8914	08 Jan 80	28 Jan 98	Duic
D-47	8986	24 Nov 83	11 Feb 96	
Dome C II	8989	12 Dec 95	12 Dec 95	
Port Martin	8909	19 Jan 90	12 Dec 00	
Cane Denison	8988	20 Jan 90	17 Dec 99	
Penguin Point	8910	20 Jan 30 24 Dec 92	21 Dec 98	
Byrd Station	8003	05 Feb 80	05 Feb 80	
Mount Sinle	8981	20 Feb 92	20 Feb 92	
Theresa	21358	20 T eb 92 29 Nov 94	20 T 60 92 20 Nov 94	
Doug	8022	20 Nov 94	20 Jan 97	
Brianna	21362	29 Nov 94	20 Jan 97 30 Nov 94	15 Jan 02
Dhanna	21302	30 100 34	15 Jan 02	15 5411 02
Harny	8000	20 Nov 94	26 Jan 00	
Flizaboth	21361	29 NOV 94	20 Jan 99	
	21301	20 Nov 94	17 Jan 90	
Sinla Domo	21303	29 NOV 94	10 Jan 90	
Siple Donle Swithinbonk	0930	21 Jan 97	24 Jan 99	12 lon 02
Swithinbank	21300	10 Jan 97	10 Jan 97	13 Jan 02
Marbla Daint	21300	OF Tab 90	15 Jan 02	
	8000			
Ferreil Degeeue North	0929	10 Dec 60	09 Jan 01	
Pegasus North	21007	23 Jan 90		
Pegasus South	8937	14 Jan 91	14 Jan 91	
	8935	22 Jan 91	25 Jan 99	
	04004	21 Jan 91	15 Jan 96	
	21364	25 Jan 92	29 Jan 01	
Windless Bight	8927	09 Dec 98	25 Jan 99	
Herble Alley	8697	11 Jan 99	11 Jan 99	00 1 00
Cape Spencer	8722	11 Jan 99	11 Jan 99	29 Jan 02
Conc Dind	8695	00 Jan 00	29 Jan 02	
	8901	28 Jan 99	28 Jan 99	
	21360		16 Jan 01	
Whitiock	8907	01 Jan 82	07 Feb 01	
Possession Island	8984	29 Dec 92	29 Dec 92	
Marilyn	8934	16 Jan 84	30 Jan 01	
Schwerdtfeger	8913	24 Jan 85	22 Jan 93	
GIII	8911	24 Jan 85	25 Jan 91	
Elaine	8915	28 Jan 86	02 Jan 97	
Lettau	8908	29 Jan 86	29 Jan 86	
Manuela	8905	06 Feb 84	15 Feb 87	
Larsen ice Sneif	8926	07 Feb 83	01 Jan 86	
Butler Island	8902	01 Mar 86	01 Mar 86	
Uranus Glacier	8920	06 Mar 86	06 Mar 86	
Limbert	8925	30 Nov 95	30 Nov 95	
Racer Rock	8947	15 Oct 89	08 Dec 91	
Bonaparte Point	8923	05 Jan 92	23 Dec 96	
Sky-Blu	8917	07 Feb 99	07 Feb 99	
Kirkwood Is.	8930	26 may 01	26 May 01	
Dismal Is.	8932	27 May 01	27 May 01	
Clean Air	8987	29 Jan 86	25 Jan 94	
Henry	8985	26 Jan 93	26 Jan 93	
Nico	8924	26 Jan 93	26 Jan 93	
Relay Station	8918	01 Feb 95	01 Feb 95	
Dome Fuji	8904	08 Feb 95	04 Feb 97	
Mizuho	21359	07 Oct 00	07 Oct 00	

4. AWS DATA SUMMARIES

The data received by the University of Wisconsin, Space Science and Engineering Center, contain all the information received by the ARGOS system including duplicate and erroneous transmissions. Invalid data are eliminated during a quality check, and the valid data are converted to scientific units producing the complete data set. Data selected at three hourly intervals, plus or minus forty minutes, produce a three hourly data set for each AWS unit month. Section 6.1, AWS Performance, provides some explanations for missing and invalid data.

Use of the 2002 Antarctic AWS data for publication should acknowledge the support of NSF-OPP Grant 9726040 or reference this publication.

4.1. Monthly Data Summaries

The monthly summaries consist of the monthly means, from the three hourly data set, and the extremes, from the complete data set. For monthly values to be included, 25% of the three hourly observations must be available. Months with 50-75% of data missing occur most often when a station is started or stopped in the middle of the month. This can cause a bias in the monthly mean, especially during seasons when parameters such as temperature change rapidly. Annual means are calculated only when twelve months of data are available. The data are presented in the same order as the sites listed in Table 3.1. Definitions of the monthly data summary headings are listed below.

Heading	Definition
Mean air temperature, °C.	Mean value for the month.
Percent of monthly data missing.	Ratio of the number of missing observations to the number of possible observations X 100.
Maximum air temperature, °C. Minimum air temperature, °C.	Maximum value for the month. Minimum value for the month.
Mean wind speed, m/s.	Mean value for the month.
Percent of monthly data missing.	Ratio of the number of missing observations to the number of possible observations X 100.
Resultant wind speed, dir/vv. Constancy.	Resultant speed and direction for the month. Ratio of the monthly resultant to the monthly mean wind speed.
Maximum wind speed, dir/vv.	Maximum wind speed and direction for the month.
Mean air pressure, mb.	Mean value for the month.
Percent of monthly data missing	Ratio of the number of missing observations to the number of possible observations X 100.
Maximum air pressure, mb. Minimum air pressure, mb.	Maximum value for the month. Minimum value for the month.
Potential temperature, K	Mean value for the month.

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
D-10 (08	3914)		66.710S				139.830E				243 M					
Jan	-2.9	06	8.4	-13.4	5.9	06	140	4.7	0.78	139	26	956.9	06	985.7	937.5	273.7
Feb	-7.0	11	0.4	-13.5	9.5	11	145	8.6	0.91	129	32	947.7	13	963.1	928.0	270.3
Mar	-10.6	13	-3.1	-23.8	11.5	30	161	11.0	0.92	153	32	955.8	14	972.3	934.3	265.9
Apr	-16.1	13	-2.4	-27.6								952.2	12	974.2	935.6	260.7
May	-16.5	05	-6.0	-26.2	5.6	04	154	5.0	0.90	174	28	961.2	05	988.2	938.0	259.6
Jun	-14.6	04	-4.6	-32.1	13.7	10	153	12.9	0.95	153	34	957.1	04	983.6	920.8	261.8
Jul	-17.3	58	-10.1	-31.4	9.8	66	157	9.2	0.94	075	42	958.1	58	972.3	947.4	259.0
Aug	-19.0	13	-8.9	-30.8								950.5	13	974.4	926.9	257.8
Sep	-17.1	02	-8.2	-26.9								948.2	01	961.8	927.1	260.0
Oct	-15.2	01	-5.2	-26.2								956.4	01	981.6	932.2	261.2
Nov	-9.1	10	-0.1	-15.9								952.6	10	969.8	936.4	267.8
Dec	-3.7	09	6.2	-17.4								948.7	09	965.8	934.2	273.6
MEAN	-12.4											953.8				
D-47 (08	3986)		67.397S	;			138.726E				1560 M					
Jan					7.4	00	240	4.1	0.55	219	20	813.8	00	839.9	798.1	
Feb					10.0	04	275	9.3	0.93	253	25	805.3	04	818.7	791.3	
Mar					13.0	66	265	12.5	0.95	264	24	808.6	66	816.9	795.4	
Apr					12.1	35	287	11.1	0.92	314	20	804.5	35	826.7	791.3	
May					12.0	25	294	11.6	0.97	312	20	811.3	25	837.3	792.6	
Jun					13.8	55	247	13.2	0.96	218	26	806.9	56	821.0	785.5	
Jul					12.3	61	241	11.8	0.95	231	24	805.2	61	824.1	786.7	
Aug					10.4	32	251	9.7	0.94	211	22	802.0	27	822.0	781.3	
Sep					12.4	59	238	12.2	0.98	239	23	801.3	57	812.3	786.9	
Oct												811.0	59	831.7	792.7	
Nov					8.1	55	236	7.7	0.94	221	22	803.2	55	812.2	794.1	
Dec					7.7	00	226	7.2	0.93	226	19	805.9	00	820.8	794.3	
MEAN												806.6				
Dome C	II (0898	39)	75.121S				123.374E				3250 M					
Jan	-25.4	01	-7.2	-45.1	3.4	00	157	1.2	0.36	073	12	655.6	00	678.4	641.1	279.6
Feb	-41.9	00	-26.1	-59.4	2.9	00	172	0.6	0.19	098	10	647.2	00	660.4	638.5	261.9
Mar	-51.2	00	-32.9	-64.6	4.3	00	241	1.7	0.40	198	13	654.7	00	669.6	645.2	250.5
Apr	-60.6	00	-39.8	-73.0	2.9	00	221	1.8	0.60	195	7	648.4	00	673.6	631.6	240.6
May	-59.6	00	-40.1	-70.1	3.3	00	200	2.3	0.69	183	10	659.2	00	677.3	642.8	240.6
Jun	-60.5	00	-42.2	-72.1	2.2	00	242	0.8	0.36	323	7	654.7	00	667.2	641.5	240.0
Jul	-62.3	00	-35.9	-75.4	2.4	00	220	1.1	0.47	186	9	653.4	00	670.1	631.0	238.1
Aug	-66.4	00	-43.6	-78.8	2.3	00	239	1.2	0.52	298	8	643.2	00	658.3	631.6	234.6
Sep	-61.1	01	-43.4	-76.0	2.4	00	171	1.9	0.78	181	9	651.4	00	661.6	640.3	239.8
Oct	-54.2	00	-36.5	-74.4	3.6	00	208	2.2	0.62	100	15	652.6	00	666.1	640.3	247.3
Nov	-39.5	00	-21.0	-53.5	2.8	00	249	2.1	0.75	262	9	651.0	00	666.7	636.4	264.2
Dec	-29.3	00	-15.4	-45.0	2.9	00	203	1.1	0.38	235	13	650.7	00	659.8	642.6	275.8
MEAN	-51.0				3.0		212	1.3	0.51			651.8				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Port Mar	tin (089	909)	66.820S				141.390E				39 M					
Jan	-0.6	00	9.2	-10.8								989.0	00	1019.0	971.5	273.4
Feb	-5.6	00	2.2	-13.1								979.9	00	996.8	960.7	269.1
Mar	-9.8	01	1.0	-21.6								988.9	00	1005.0	964.3	264.2
Apr	-15.4	00	-2.5	-25.8								984.8	00	1009.0	967.4	258.9
Мау	-16	00	-4.8	-23.1								995.2	00	1025.2	968.4	258.0
Jun	-14.2	01	-3.1	-30.8								990.9	01	1017.9	956.8	259.7
Jul	-15.7	00	-4.8	-28.9								991.1	00	1015.6	963.3	258.1
Aug	-18.0	00	-7.8	-27.5								984.5	00	1010.1	959.7	256.3
Sep	-16.1	00	-7.0	-24.5								981.8	01	996.2	961.6	258.4
Oct	-14.4	00	-1.2	-24.9								989.8	00	1014.5	967.4	259.5
Νον	-7.5	02	3.6	-14.8								984.8	02	1003.1	968.3	266.9
Dec	-2.0	02	5.5	-13.9								980.2	02	997.6	964.6	272.8
MEAN	-11.2											986.7				
Cape De	enison (08988	67.009S			· · ·	142.664E				31 M					
Jan	0.1	01	9.6	-10.2	9.0	01	153	8.1	0.90	114	37	988.6	02	1019.3	970.8	274.2
Feb	-5.0	00	2.5	-13.8	21.3	00	159	20.7	0.97	166	45	979.5	00	997.7	961.6	269.7
Mar	-10.4	40	1.1	-21.6	28.9	40	165	28.4	0.99	172	51	990.4	40	1006.3	973.0	263.5
Apr	-18.1	58	-8.9	-26.9	30.6	58	170	30.0	0.98	174	51	989.4	59	1006.6	968.3	255.8
Мау																
Jun	-17.2	68	-9.8	-26.0	11.7	68	163	11.5	0.98	167	40	975.8	69	995.3	962.0	257.6
Jul	-14.0	61	-3.2	-23.1	11.4	61	165	11.0	0.97	153	47	988.2	63	1014.3	964.0	259.9
Aug	-19.0	57	-9.6	-27.6	25.9	27	165	25.2	0.97	163	52	981.5	57	1002.3	961.1	255.5
Sep																
Oct																
Nov																
Dec	-1.1	02	5.4	-11.9	11.2	02	155	10.3	0.92	138	39	979.2	02	995.8	963.7	273.7
Penguin	Point ((08910	67.617S				146.180E				30 M					
Jan	-0.7	03	5.9	-11.8	5.1	01	173	4.4	0.86	188	28	981.7	01	1014.3	967.1	273.9
Feb	-5.5	02	1.9	-14.5	8.3	01	172	7.7	0.93	181	29	972.6	01	990.1	954.4	269.8
Mar	-10.7	00	0.6	-22.8	13.7	06	174	12.9	0.94	186	36	981.1	00	996.6	957.8	263.9
Apr	-17.9	00	-1.8	-32.1	16.4	08	183	15.9	0.97	174	44	977.2	00	1000.9	958.4	257.0
May	-19.0	00	-3.9	-28.8	12.5	00	180	12.0	0.96	177	40	987.6	00	1011.6	960.0	255.1
Jun	-15.9	01	-2.9	-30.2	14.4	01	170	13.6	0.94	190	45	985.4	03	1009.2	961.1	258.4

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Byrd (08	3903)		80.007S	;			119.404	/			1530 M					
Jan	-12.3	00	-2.1	-23.6	3.9	00	021	3.6	0.93	026	12	814.3	00	824.6	806.4	276.6
Feb	-19.3	00	-6.9	-36.2	5.7	00	015	5.0	0.88	050	17	806.5	00	818.5	789.0	269.9
Mar	-19.1	00	-6.2	-34.8	5.1	03	353	3.9	0.77	299	18	818.8	00	831.1	807.6	269.0
Apr	-31.4	13	-15.6	-49.0	6.4	13	041	5.4	0.84	177	22	805.2	13	820.0	790.1	257.2
May																
Jun																
Jul																
Aug																
Sep																
Oct																
Nov	-13.2	75	-6.8	-19.9								810.8	75	819.1	802.2	276.1
Dec	-13.1	00	-3.4	-24.4	4.1	07	008	3.4	0.84	036	14	811.0	00	821.0	798.1	276.1
Mt. Siple	(08981)	73.198S				127.052V	J			230 M					
		_														
Jan	-1.6	01	3.6	-6.8								955.8	42	975.2	942.6	275.3
Feb	-4.7	00	1.6	-11.2								946.6	14	969.6	925.9	272.3
Mar	-5.1	00	1.4	-10.6								967.8	12	984.8	951.5	270.1
Apr	-11.4	00	-3.4	-19.1								947.1	00	963.7	895.0	265.9
Мау	-9.1	00	-1.0	-19.9								973.4	01	996.3	950.8	266.0
Jun	-13.8	00	-2.9	-31.1								971.2	00	993.6	942.9	261.6
Jul	-20.6	00	-2.2	-39.9								954.9	00	985.4	923.8	255.9
Aug	-19.0	01	-1.4	-33.2								957.1	01	985.0	922.3	257.4
Sep	-7.9	00	-1.1	-18.5								956.2	00	973.5	935.5	268.7
Oct	-11.4	00	-1.6	-21.4								968.8	00	984.9	949.1	264.1
Nov	-4.4	01	1.9	-11.4								960.6	15	980.7	937.5	271.6
Dec	-1.9	02	4.2	-5.2								953.7	35	971.2	939.8	274.8
MEAN	-9.2											959.4				
	(0105															
Theresa	1 (21358	3)	84.5995				115.8110	/			1463 M					
	40.7	04	4.0	474	0.5		000	6.4	0.04	070	45	000.0		000 5	000.4	077.0
Jan	-10.7		-1.8	-17.4	6.5	00	082	6.1	0.94	076	15	820.8	00	833.5	809.1	277.0
rep	-18.2	00	-7.6	-26.1	9.8	00	088	9.5	0.97	041	22	814.4	00	825.0	803.2	270.4
	-22.9	00	-11.1	-37.9	0.0		091	0.4	0.95	103	21	022.3	00	032.2	706.2	264.7
Apr	-26.0	00	-17.5	-39.5	11.7	00	080	11.0	0.95	096	29	813.0	00	826.2	796.2	262.2
way	-26.2	00	-7.1	-47.0	9.6	07	080	9.1	0.95	055	23	824.0	00	843.1	803.0	261.0
Jun	-32.4	00	-11.4	-49.4	8.2	10	083	0.7	0.94	087	23	010.0	00	032.0	799.5	254.9
JUI	-31.3	61	-21.4	-48.8	10.9	61	077	9.3	0.85	105	23	0.110	61	824.3	794.9	256.8
Climals at	. (21.20	4 \	02 0070				107 07014	1			540 M					
⊂⊪∠apeti	1(2136	1)	o∠.oU/S				131.078	v			519 M					
Jan	01		20	_171	30		060	<u></u> γ ⊑	0.65	075	11	022.2		03/ 0	011 0	270.2
Feb	-9.1		-2.9	-17.1	5.0		000	2.3 1 E	0.03	073	14	914 2		934.9	80/ 0	210.2
Mar	_20.2	00	-3.0	-23.0	5.4		033	ч.J З 7	0.04	0//	15	978 1		923.9	034.9 QNQ Q	203.7
Apr	-20.0	10	-5.9	-30.9	10	10	050	3.7	0.72	000	13	915.0	10	970 /	807.1	237.9
יארי	-50.0	12	-3.5	-72.4	7.2	12	0.00	5.7	0.07	000	25	515.5	12	523.4	037.1	240.0

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Brianna	(08931)	83.8895			1	134.154V	/			525 M					
Jan	-9.2	46	-2.4	-14.8	4.9	46	064	4.5	0.92	063	12	919.5	46	933.7	911.0	270.3
Feb	-14.7	00	-5.0	-24.2	8.2	00	069	7.9	0.96	094	23	915.7	00	927.0	898.3	265.1
Mar	-21.3	00	-4.0	-37.0	6.0	00	058	5.1	0.85	073	17	928.2	00	943.8	908.9	257.3
Apr	-26.8	00	-14.9	-37.8	9.4	00	068	9.1	0.97	083	29	917.1	00	929.4	897.2	252.5
May	-23.5	00	-2.4	-46.2	9.5	41	068	9.2	0.96	083	19	929.8	00	955.9	897.3	254.9
Jun	-32.7	00	-6.1	-49.0								928.1	00	951.4	907.9	245.7
Jul	-33.1	00	-16.1	-51.6								921.3	00	941.0	890.1	245.8
Aug	-33.4	00	-11.5	-49.5								913.1	00	937.1	883.7	246.1
Sep	-21.2	00	-7.4	-40.0								923.6	00	940.2	897.9	257.8
Oct	-22.0	00	-8.0	-34.6								929.1	00	944.3	905.6	256.5
Nov	-13.9	00	-3.1	-22.6	4.4	23	039	3.2	0.72	075	14	924.0	00	945.0	901.3	265.2
Dec	-9.4	00	-1.8	-16.5	4.7	00	057	4.4	0.94	070	15	919.4	02	929.5	904.5	270.2
MEAN	-21.8											922.4				
Harry (C	8900)		83.0035			1	121.393V	/			945 M					
Jan	-10.9	00	-4.0	-16.9	5.8	00	034	5.4	0.93	041	17	874.0	00	884.9	862.6	272.6
Feb	-17.0	00	-6.4	-25.6	8.4	00	036	8.1	0.97	048	20	866.9	00	878.0	851.6	266.9
Mar	-21.5	00	-6.6	-33.8	7.1	39	027	6.0	0.84	041	18	877.7	00	891.0	860.1	261.3
Apr	-27.9	00	-16.1	-42.1	9.1	09	041	8.9	0.97	059	25	866.8	00	879.9	847.9	255.5
May	-25.5	00	-5.6	-50.4								879.8	00	900.1	851.2	256.9
Jun	-32.7	00	-8.4	-51.1								876.3	00	894.8	855.1	249.7
Jul	-33.3	00	-17.6	-52.0	10.8	59	031	10.4	0.96	004	27	869.7	00	887.0	844.0	249.6
Aug	-33.4	00	-13.6	-47.2								862.3	00	884.6	838.4	250.2
Sep	-21.5	00	-9.0	-44.2								874.8	00	887.8	854.2	261.5
Oct	-23.7	00	-9.5	-35.9								878.9	00	895.8	857.9	258.8
Νον	-14.7	00	-5.2	-23.5	5.8	51	006	4.9	0.84	021	15	874.2	00	895.7	854.3	268.6
Dec	-11.8	00	-5.2	-20.1	5.3	00	029	4.8	0.91	028	14	870.3	00	879.7	856.9	271.9
MEAN	-22.8											872.6				
Erin (21	363)		84.904S			1	128.8281	/			990 M					
Jan	-9.4	00	-2.4	-14.5	8.5	00	080	8.1	0.96	089	23	877.4	00	888.9	864.2	273.8
Feb	-16.2	00	-6.4	-24.1	13.4	00	088	13.1	0.97	100	30	871.4	00	882.5	859.2	267.3
Mar	-21.9	00	-10.6	-35.1	10.9	00	089	9.9	0.91	083	23	880.8	00	893.5	863.0	260.6
Apr	-24.9	00	-13.5	-39.5	13.6	00	087	13.2	0.97	094	32	871.3	00	884.4	852.6	258.3
May	-25.0	00	-5.4	-46.6	12.6	03	089	12.1	0.96	089	30	883.2	00	904.8	856.7	257.2
Jun	-31.9	00	-10.5	-48.1	10.3	06	085	9.8	0.95	082	27	879.1	00	897.6	860.4	250.4
Jul	-28.4	00	-16.6	-45.9	13.9	14	088	13.4	0.97	096	33	874.2	00	892.3	850.4	254.4
Aug	-31.8	48	-17.1	-42.9	13.5	57	081	13.1	0.97	089	28	863.0	48	886.5	842.3	251.7

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Siple Do	me (08	938)	81.656S			1	48.773W	/			668 M					
Jan	-10.3	00	1.9	-23.8	2.9	00	053	1.0	0.35	224	09	888.1	00	900.3	877.1	272.0
Feb	-16.2	02	-2.9	-26.8	3.7	00	059	1.1	0.29	004	14	879.2	00	891.7	861.4	266.6
Mar	-18.7	02	-4.9	-31.2	4.2	05	037	2.0	0.49	042	18	893.1	00	909.2	871.5	262.8
Apr	-27.2	03	-9.2	-40.5	1.2	06	084	1.0	0.84	104	17	879.4	00	896.5	863.6	255.2
Мау	-21.6	05	-4.8	-42.0								893.1	00	919.9	862.5	259.8
Jun	-29.8	03	-5.4	-51.1								892.7	00	914.2	870.4	251.4
Jul	-35.6	03	-23.1	-52.1								883.4	00	904.7	849.8	246.1
Aug	-35.8	06	-11.9	-49.5								876.5	00	898.8	846.1	246.5
Sep	-22.3	08	-8.4	-35.9								887.2	00	904.4	855.8	259.6
Oct	-20.5	07	-5.4	-39.0								892.9	00	909.2	870.2	260.9
Νον	-13.3	08	-0.1	-23.4								889.9	00	912.7	871.1	268.6
Dec	-9.4	05	4.1	-19.0	1.6	31	029	0.1	0.09	271	08	885.4	00	896.0	871.1	273.1
MEAN	-21.7											886.7				
Swithin	bank (2	1355)	81.201S			1	26.177W	/			959 M					
Jan	-10.4	40	-2.2	-17.4	5.7	40	004	5.4	0.95	359	11	869.7	55	883.6	861.9	273.1
Feb	-15.7	00	-4.2	-28.8	8.2	00	005	7.6	0.93	360	19	864.5	05	876.6	843.3	267.9
Mar	-20.4	42	-10.0	-29.4	6.4	42	342	5.4	0.84	360	17	876.1	42	890.7	862.3	262.6
Marble F	oint (08	3906)	77.439S				163.754E				108 M					
Jan	-2.0	00	9.1	-9.5	3.7	00	102	1.2	0.32	159	22	975.5	00	988.8	964.5	273.1
Feb	-7.5	00	1.1	-16.6	3.8	00	141	2.8	0.73	187	15	971.0	00	983.0	959.5	268.0
Mar	-15.1	00	-5.4	-26.0	4.5	00	152	3.5	0.77	141	16	983.6	00	997.2	969.0	259.3
Apr	-20.8	00	-7.0	-30.4	3.6	00	163	2.7	0.76	166	24	974.7	00	989.9	958.3	254.2
May	-19.2	00	-4.2	-33.2	4.3	00	158	3.2	0.75	165	19	985.6	00	1016.0	962.1	255.0
Jun	-27.9	00	-8.4	-41.5	3.8	00	153	2.7	0.70	138	23	987.6	00	1011.8	964.6	246.2
Jul	-29.2	00	-13.5	-39.0	2.7	00	173	1.5	0.58	179	18	982.3	00	1008.5	953.9	245.2
Aug	-30.5	00	-12.6	-41.9	3.4	00	152	2.4	0.69	112	21	972.1	00	992.3	953.6	244.7
Sep	-22.0	00	-6.2	-35.6	3.3	00	150	2.4	0.72	138	15	980.0	00	999.0	947.4	252.6
Oct	-17.5	00	-6.8	-27.5	3.1	00	155	2.1	0.66	152	18	983.1	00	1001.9	954.5	257.0
Nov	-10.5	00	-2.4	-16.6	3.7	00	142	2.4	0.65	132	17	976.3	00	1000.6	959.2	264.5
Dec	-4.9	00	1.9	-13.1	3.2	00	127	1.2	0.39	131	21	971.4	00	981.4	958.3	270.5
MEAN	-17.3				3.6		150	2.3	0.64			978.6				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Ferrell (08929)		77.910S				170.820E				45 M					
Jan	-5.6	00	2.5	-18.0	3.2	00	191	2.0	0.63	193	17	983.2	00	996.3	972.3	268.9
Feb	-14.3	00	-2.0	-30.5	4.7	00	206	3.9	0.83	204	17	977.8	00	990.3	963.9	260.6
Mar	-20.4	00	-6.4	-36.8	7.0	00	196	5.2	0.73	202	25	990.4	00	1003.6	976.7	253.5
Apr	-28.0	00	-11.4	-41.9	5.4	00	201	4.7	0.87	187	23	981.1	00	996.0	964.9	246.5
May	-26.8	00	-10.5	-45.8	7.7	03	196	6.9	0.90	197	26	992.2	00	1023.2	969.4	247.0
Jun	-35.7	00	-13.1	-52.2	4.6	10	189	3.9	0.86	200	25	995.0	00	1019.4	971.0	237.8
Jul	-38.8	00	-19.6	-50.4	2.1	04	212	1.5	0.70	197	20	989.4	00	1016.2	961.0	235.1
Auq	-38.0	00	-13.6	-50.8	3.2	16	200	3.1	0.96	204	29	979.2	00	1000.0	961.4	236.7
Sep	-27.5	00	-9.1	-45.6	7.3	28	194	6.7	0.92	191	21	986.6	00	1006.3	952.4	246.7
Oct	-21.7	00	-9.6	-35.1	6.2	10	198	5.0	0.80	215	21	989.8	00	1008.2	962.2	252.2
Nov	-13.3	00	-3.8	-23.6	4.9	00	194	3.6	0.73	198	19	983.4	00	1006.9	967.1	261.2
Dec	-7.0	00	2.5	-17.8	4.1	00	197	3.2	0.77	190	18	978.6	00	988.6	964.2	267.8
MEAN	-23.1				5.0		197	4.1	0.81			985.6				
Pegasus	s N (21)	357)	77 9525				166 500E				8 M					
		,									•					
Jan	-39	01	4 9	-14 5	35	00	072	1.6	0 46	167	21	988 5	00	1001.3	977.5	270 1
Feb	-11.5	00	1.0	-26.2	2.9	00	074	1.5	0.50	163	18	983.4	00	996.1	971.0	262.9
Mar	-18.6	00	-6.4	-34.4	4.3	00	104	1.9	0.44	169	25	996.3	00	1009 7	981.7	254.8
Apr	-25.1	00	-6.5	-39.8	3.5	00	106	1 4	0.40	181	30	987.2	00	1002.3	970 7	249.0
May	-23.5	00	-4 0	-43.5	5.3	00	129	27	0.50	170	28	998.4	00	1029.9	974.8	249.8
Jun	-33.7	00	-8.1	-52.9	2.6	00	048	17	0.66	173	23	1000.8	00	1025.9	977.5	239.4
Jul	-36.5	00	-14 1	-48.5	1.6	00	094	0.6	0.38	180	25	995.3	00	1021.9	965.9	237.0
Aua	-35.1	00	-10.2	-50.4	31	00	131	1 4	0.47	170	33	985.0	00	1006.0	966.4	239.1
Sep	-25.9	00	-5.8	-41.8	3.4	00	085	1 4	0.42	163	26	992.7	00	1012.4	958.7	247.8
Oct	-20.0	00	-5.2	-32.6	39	00	105	11	0.28	176	25	995.7	00	1015.0	966.0	253.5
Nov	-11 8	00	-29	-20.4	38	00	085	14	0.37	181	24	989.0	00	1013 9	971 5	262.2
Dec	-5.7	00	2.9	-15.4	4.3	00	089	1.6	0.38	163	25	984.1	00	994.5	970.0	268.7
MEAN	-20.9				3.5		095	1.4	0.44			991.4				
Pegasus	s S (089	937)	77.990S				166.580E				5 M					
geneen											•					
Jan	-3.9	01	6.5	-15.5	3.5	00	088	1.4	0.39	172	21	989.7	00	1002.0	979.2	270.0
Feb	-11 7	00	0.6	-26.5	3.0	00	101	12	0.41	181	21	985.7	00	998 7	971.9	262.6
Mar	-19.0	00	-7 4	-34.2	4.2	00	129	1.8	0.43	197	26	999.2	00	1012.8	984.5	254.3
Apr	-25.7	01	-7.2	-40.4	21	00	105	0.9	0.44	187	25	990.3	00	1005.1	973.8	248.2
May	-24.3	00	-4.8	-44.5	10.7	61	170	8.0	0.75	180	32	1001.6	00	1033.3	978.1	248.8
Jun	-34.9	00	-8.2	-53.1		51	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0	5.70		52	1004 2	00	1029.4	980.9	238.0
Jul	-37.5	00	-14 1	-49.2								998 7	00	1025.3	969.4	235.8
Aug	-36 1	00	-10.5	-50.9								988.5	00	1009 3	970 N	237.9
Sep	-26.5	00	-5.8	_41.9								996 1	00	1015 9	962.0	247.0
Oct	_20.0	00	_4 8	-33.2								999 n	00	1018.6	969.2	253.1
Nov	_10.0	00	1 8	-18 4	4 2	05	173	15	0 35	202	25	991 9	00	1017 0	974 3	263.7
Dec	-3.5	01	5.2	-12.9	4.3	00	108	1.3	0.31	184	23	986.3	00	996.3	973 3	270.8
MEAN	-21 1		0.2	. 2.0	1.0		100	1.0	2.01		- r	994.3		200.0	010.0	2, 0.0
												221.0				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Minna Bl	uff (08	935)	78.550S	;			166.690E				895 M					
Jan	-9.7	71	-3.5	-13.4	4.9	71	188	4.2	0.85	210	20	873.3	71	879.6	866.6	273.9
Feb	-14.9	00	-7.0	-22.1	5.4	22	189	4.4	0.82	214	38	873.2	00	884.5	858.5	268.5
Mar	-21.2	00	-10.6	-33.0	9.6	15	191	7.3	0.76	193	34	884.5	00	897.2	869.5	261.0
Apr	-25.3	00	-15.1	-36.0	10.8	20	190	9.4	0.87	208	54	875.0	00	889.8	858.8	257.5
Мау	-24.0	00	-11.8	-36.5	7.7	05	208	5.2	0.68	194	28	885.8	00	913.3	863.5	258.0
Jun	-30.3	00	-17.5	-43.2	6.2	34	188	4.0	0.64	181	25	886.8	00	907.7	867.2	251.4
Jul	-29.2	00	-17.6	-42.9	7.1	00	192	5.8	0.82	214	50	881.2	00	904.8	857.6	253.0
Aug	-32.4	00	-19.9	-46.0	8.2	11	194	6.2	0.75	187	39	872.2	00	889.0	855.9	250.4
Sep	-24.5	00	-14.5	-34.4	4.9	38	201	4.3	0.88	198	22	880.2	00	896.7	850.7	258.0
Oct	-22.5	00	-12.1	-30.6	10.4	33	193	9.7	0.93	201	41	883.1	00	899.7	856.9	260.0
Nov	-17.1	00	-10.1	-26.8	4.8	08	208	3.5	0.72	204	25	877.7	00	902.1	861.4	265.8
Dec	-10.7	00	-3.0	-21.6	4.0	18	209	2.5	0.61	200	30	873.8	00	883.7	859.0	272.8
MEAN	-21.8				7.0		195	5.5	0.78			878.9				
Linda (08	8919)		78.460S				168.380E				47 M					
Jan	-6.0	00	3.6	-18.9	4.2	00	197	2.3	0.56	195	18	965.6	00	978.5	954.8	269.8
Feb	-14.2	00	-3.6	-28.1	6.1	00	199	5.4	0.88	198	20	960.0	00	972.7	946.4	262.0
Mar	-21.6	00	-8.4	-37.0	8.3	02	198	7.4	0.88	198	33	972.6	00	985.7	958.1	253.6
Apr	-27.9	00	-13.2	-42.1	7.1	00	199	6.6	0.92	198	26	963.0	00	977.8	946.6	247.9
May	-26.8	00	-11.1	-47.2	11.4	30	199	10.8	0.95	200	30	974.4	00	1005.5	949.9	248.2
Jun	-36.3	00	-13.5	-54.0	8.0	30	197	7.5	0.94	200	30	976.6	00	1001.3	951.5	238.5
Jul	-38.8	00	-19.0	-51.6	7.5	49	200	7.3	0.97	197	26	970.6	00	997.3	941.8	236.9
Aug	-36.8	01	-14.8	-51.2	12.1	52	204	11.6	0.96	200	39	960.4	01	979.8	941.2	239.1
Sep	-28.3	00	-10.6	-45.1	12.7	59	199	12.7	1.00	201	27	968.5	00	988.4	933.7	247.1
Oct	-22.8	27	-11.0	-36.1	13.0	67	199	13.0	1.00	205	26	972.4	27	990.2	942.6	252.4
Willie Fie	eld (213	864)	77.870S	:		-	167.020E				14 M					
Jan	-5.5	00	5.9	-17.1	3.1	00	079	1.6	0.50	170	20	988.1	00	1000.8	976.8	268.6
Feb	-12.6	00	0.5	-27.4	3.1	00	062	1.7	0.54	181	16	982.9	00	995.4	970.8	261.8
Mar	-19.8	00	-8.2	-35.5	4.4	00	091	2.3	0.52	187	17	995.8	00	1009.1	981.0	253.6
Apr	-26.2	00	-9.2	-40.5	3.3	00	073	1.6	0.50	176	21	986.8	00	1002.0	969.9	247.9
Мау	-24.7	00	-6.6	-45.9	4.6	00	103	2.1	0.46	195	20	998.2	00	1029.3	973.5	248.6
Jun	-34.6	00	-11.2	-56.0	3.2	00	067	2.2	0.68	173	18	1000.4	00	1025.8	977.2	238.6
Jul	-38.0	00	-16.9	-50.4	1.3	00	090	0.5	0.36	146	19	994.9	00	1021.5	964.7	235.6
Aug	-36.6	00	-13.0	-54.6	2.7	00	111	1.1	0.41	193	23	984.9	00	1005.1	965.6	237.6
Sep	-26.9	00	-7.4	-44.5	3.9	04	087	2.3	0.59	166	24	992.2	00	1011.7	959.1	246.8
Oct	-21.4	00	-7.4	-33.8	4.1	00	092	1.6	0.39	208	19	995.2	00	1014.0	965.2	252.2
Nov	-13.2	00	-3.9	-23.1	3.8	00	090	1.8	0.46	187	16	988.5	00	1013.6	970.9	260.8
Dec	-6.9	00	2.2	-17.1	3.5	00	097	1.8	0.50	169	18	983.7	00	994.0	969.6	267.5
MEAN	-22.2				3.4		086	1.7	0.49			991.0				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Windles	s Bt (08	3927)	77.728S				167.703E				60 M					
Jan	-6.2	50	2.8	-17.6	1.6	48	065	0.9	0.55	120	07	983.8	49	991.4	976.7	268.2
Feb	-10.9	00	1.8	-28.4	2.3	00	037	1.1	0.47	343	11	983.5	00	996.5	971.1	263.5
Mar	-19.1	00	-4.6	-39.1	2.8	00	056	1.1	0.38	191	17	997.0	00	1011.1	982.2	254.3
Apr	-24.7	00	-6.8	-42.8	2.3	00	015	1.0	0.41	198	11	988.1	00	1003.3	971.1	249.3
May	-23.5	00	-4.5	-47.1	3.0	00	047	1.4	0.47	236	11	999.7	00	1031.0	975.0	249.7
Jun	-34.4	00	-9.1	-55.5	2.1	00	059	1.3	0.62	087	11	1001.6	00	1026.2	979.0	238.6
Jul	-36.6	00	-12.2	-49.8	1.5	00	357	0.6	0.39	259	10	996.0	00	1022.7	965.8	236.9
Aug	-35.4	00	-11.4	-56.1	2.0	00	020	0.4	0.23	179	16	986.2	00	1006.8	967.0	238.7
Sep	-25.3	00	-5.2	-47.4	2.7	02	049	1.5	0.57	110	15	993.6	00	1013.1	960.8	248.3
Oct	-20.0	00	-5.6	-36.5	2.6	02	039	0.8	0.31	219	17	996.6	00	1015.5	966.2	253.4
Nov	-11.6	00	-3.5	-22.9	2.1	00	048	0.7	0.33	001	13	989.2	00	1014.9	971.0	262.3
Dec	-5.0	00	4.0	-16.8	2.1	00	084	0.5	0.24	187	13	983.3	00	994.5	970.5	269.4
MEAN	-21.1				2.3		045	0.9	0.41			991.6				
Herbie A	lley (08	3697)	78.100S				166.670E				30 M					
Jan	-4.0	00	5.4	-16.1	3.8	00	126	1.0	0.26	193	24	988.7	02	1001.6	977.7	270.0
Feb	-11.8	01	1.8	-27.0	3.5	00	157	1.1	0.31	210	24	983.7	00	996.6	970.3	262.6
Mar	-19.0	00	-6.8	-33.9	5.0	00	165	2.2	0.44	211	28	996.4	00	1010.0	981.8	254.5
Apr	-25.5	00	-7.0	-40.9	4.1	00	172	1.6	0.39	181	31	987.3	00	1001.6	971.0	248.5
May	-24.6	00	-4.4	-46.0	5.2	00	185	2.7	0.51	181	39	998.6	00	1030.3	972.0	248.7
Jun	-34.9	00	-8.8	-54.6	2.7	00	155	0.5	0.17	191	25	999.8	06	1026.2	975.8	239.2
Jul	-37.1	00	-14.8	-50.0	2.2	00	167	0.8	0.38	176	31	995.6	00	1022.4	966.5	236.4
Aug	-35.5	00	-10.8	-50.6	4.2	00	182	1.9	0.44	197	38	985.5	02	1006.0	966.9	238.7
Sep	-26.4	00	-5.6	-42.4	3.8	00	179	1.6	0.42	202	30	992.9	00	1013.0	958.3	247.2
Oct	-19.9	00	-5.4	-35.8	5.3	00	182	2.0	0.37	233	30	996.1	09	1015.5	966.7	253.2
Nov	-11.7	00	-3.6	-19.6	4.9	00	159	2.0	0.40	208	25	988.8	10	1014.0	971.9	262.1
Dec	-5.5	00	2.8	-14.4	4.9	00	165	1.9	0.39	186	24	984.3	03	994.6	970.1	268.8
MEAN	-21.3				4.1		170	1.6	0.37			991.5				
Cape Sp	encer	(0869	77.9705			-	167.550E				30 M					
Jan																
Feb	-12.8	00	0.8	-29.2	3.4	00	139	0.9	0.28	211	19	983.8	00	996.9	970.9	261.6
Mar	-20.1	00	-8.2	-36.5	4.7	00	145	1.4	0.29	195	28	997.1	00	1010.4	982.3	253.3
Apr	-26.3	00	-8.2	-42.1	3.8	00	167	0.9	0.25	186	22	988.1	00	1003.2	971.4	247.7
May	-25.2	00	-5.4	-47.2	4.8	00	185	1.5	0.32	186	27	999.5	00	1030.8	975.3	248.1
Jun	-35.8	00	-8.1	-55.8	3.2	00	092	0.8	0.26	208	23	1001.7	00	1026.6	978.0	237.2
Jul	-37.7	00	-15.9	-51.5	1.9	00	203	0.5	0.27	211	22	996.1	00	1022.8	966.6	235.8
Aug	-35.6	00	-10.9	-51.0	4.1	00	193	1.9	0.46	202	32	986.0	00	1006.4	966.6	238.5
Sep	-26.7	00	-5.8	-44.2	4.1	00	143	1.0	0.25	183	24	993.6	00	1013.3	959.9	246.9
Oct	-21.2	00	-7.1	-36.0	4.6	00	176	1.2	0.26	188	25	996.6	00	1015.5	966.7	252.2
Nov	-12.9	00	-3.0	-23.2	3.9	00	128	1.7	0.42	184	22	989.7	00	1014.9	972.3	261.0
Dec	-6.3	00	1.9	-17.6	3.8	00	142	1.7	0.44	194	20	984.6	00	994.3	971.0	268.0

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Cape Bir	d (089	01)	77.224S	;			166.440E				42 M					
Jan	-1.2	00	6.9	-6.8	4.2	00	314	0.8	0.20	209	31	985.4	42	997.9	973.1	272.6
Feb	-5.3	00	4.0	-10.8	4.5	00	024	0.4	0.08	186	24	978.9	28	990.9	963.5	270.7
Mar	-11.0	00	-2.5	-19.9	4.8	00	063	1.7	0.35	236	25	995.3	52	1003.1	989.0	261.1
Apr	-18.1	00	-3.4	-27.8	4.9	00	145	1.5	0.31	181	37	983.0	30	997.8	958.3	256.1
May	-16.8	00	-0.6	-28.8	3.8	00	068	1.5	0.38	210	25	993.3	00	1023.7	963.6	256.9
Jun	-25.0	00	-8.0	-35.6	3.1	00	057	1.6	0.52	015	16	996.5	00	1020.7	973.9	248.4
Jul	-27.5	00	-7.6	-34.5	3.6	00	069	0.9	0.26	219	39	991.3	00	1018.8	964.0	246.2
Aug	-29.3	00	-9.1	-40.6	3.3	00	046	1.9	0.57	209	27	981.0	00	1002.6	964.0	245.3
Sep	-21.2	01	-4.0	-33.4	3.0	00	046	1.0	0.33	206	27	988.6	00	1008.3	952.8	252.8
Oct	-16.9	00	-5.0	-25.9	3.6	00	034	1.1	0.31	205	28	991.6	00	1012.7	963.8	256.9
Nov	-9.0	01	-0.2	-18.6	2.8	00	022	1.3	0.45	184	17	985.0	00	1007.5	968.8	265.3
Dec	-4.2	00	1.9	-12.8	3.7	00	006	1.7	0.47	184	30	980.1	00	990.9	963.5	270.5
MEAN	-15.5				3.8		048	1.0	0.35			987.5				
Laurie II	(21360)	77.550S	:			170.820E				30 M					
Jan	-6.8	00	2.1	-20.8	3.7	00	184	2.4	0.65	188	19	984.2	00	997.5	973.1	267.6
Feb	-15.2	00	-3.6	-29.5	4.8	00	195	4.0	0.84	202	17	978.9	00	991.9	965.3	259.5
Mar	-21.2	00	-7.8	-35.9	6.8	05	195	5.0	0.73	219	23	991.6	00	1005.0	978.0	252.5
Apr	-28.8	00	-11.7	-42.9	5.6	00	190	4.9	0.88	187	27	982.2	00	996.6	966.6	245.6
May	-27.3	00	-11.4	-47.2	8.2	09	193	7.5	0.92	195	28	993.2	00	1024.1	969.6	246.4
Jun	-35.8	00	-13.8	-53.5	5.2	09	189	4.4	0.84	187	23	996.0	00	1020.1	972.3	237.7
Jul	-38.7	00	-20.2	-50.6	4.5	30	193	3.9	0.88	198	22	990.6	00	1017.5	962.1	235.1
Aug	-38.5	00	-15.0	-52.8	5.9	32	194	5.2	0.88	211	31	980.3	00	1001.7	962.9	254.0
Sep	-27.8	00	-8.9	-46.6	4.4	30	192	4.1	0.94	201	21	987.6	00	1007.4	952.9	246.2
Oct	-22.8	00	-11.1	-37.1	6.6	12	193	5.4	0.82	212	26	990.8	00	1009.8	963.4	251.1
Nov	-14.4	00	-5.4	-24.0	5.5	10	191	4.3	0.79	195	19	984.4	00	1007.3	968.1	259.9
Dec	-8.2	01	1.5	-19.1	4.7	00	191	3.8	0.80	207	19	979.6	00	989.9	965.1	266.5
MEAN	-23.8				5.5		192	4.6	0.83			986.6				
Whitlock	(0890	7)	76.144S				168.392E				206 M					
Jan	-3.2	02	5.4	-9.8	2.8	00	175	0.6	0.22	190	20	956.1	00	969.8	942.3	273.5
Feb	-7.8	01	0.2	-13.2	3.9	00	144	0.9	0.23	176	15	950.6	00	962.5	938.5	269.3
Mar	-14.6	00	-7.2	-23.8	5.6	00	275	0.6	0.11	280	22	961.9	00	975.8	949.0	261.4
Apr	-21.8	00	-9.4	-30.6	2.5	10	273	0.8	0.31	224	18	952.6	00	968.7	938.1	254.9
May	-20.7	00	-4.9	-30.5	5.5	05	216	2.3	0.41	197	41	963.1	00	991.3	932.7	255.3
Jun	-26.7	00	-11.4	-38.6	2.6	01	181	0.5	0.18	235	16	964.8	00	986.0	944.2	249.1
Jul	-28.8	00	-16.2	-38.8	4.4	00	312	1.7	0.38	350	16	960.1	00	987.0	934.7	247.2
Aug	-30.2	00	-16.5	-41.2	2.5	01	309	0.9	0.37	297	10	949.8	00	970.0	934.7	246.6
Sep	-22.1	00	-8.4	-30.6	5.3	13	231	1.1	0.21	170	21	957.8	00	976.4	925.8	254.2
Oct	-18.7	00	-10.9	-23.9	5.3	00	260	1.3	0.24	184	20	961.2	00	981.7	934.9	257.4
Nov	-11.2	00	-1.6	-17.9	4.5	00	174	1.3	0.30	197	21	955.4	00	977.7	939.6	265.4
Dec	-5.7	00	1.9	-14.5	3.6	00	187	8.0	0.23	177	23	951.4	00	961.9	936.1	271.3
MEAN	-17.6				4.0		232	0.7	0.27			957.1				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
	. ,				. ,			,			, í	. ,				. ,
Possess	sion Is (08984	71.891S				171.210E				30 M					
Jan	1.6	01	12.0	-3.1								976.8	00	994.5	963.7	276.6
Feb	-1.4	01	5.2	-5.6								971.5	00	984.8	957.6	274.0
Mar	-7.0	00	-0.5	-14.5								982.2	00	998.5	969.0	267.5
Apr	-15.1	00	-3.2	-25.9								973.9	00	995.0	959.1	260.1
Mav	-14.6	00	-3.8	-24.1								982.4	00	1006.0	942.8	259.9
Jun	-17.8	00	-8.0	-25.5								984.7	00	1005.3	965.0	256.5
Jul	-22.5	00	-12.8	-28.6								983.3	00	1014.6	957.2	251.9
Aua	-25.5	00	-15.6	-33.6								973.1	00	991.6	960.9	249.6
Sep	-16.3	00	-7.6	-23.6								978.1	00	994.3	949.2	258.5
Oct	-12.8	00	-3.6	-17.2								982.2	00	1003.8	956.6	261.7
Nov	-6.2	00	2.6	-13.2								975.7	00	993.2	959.4	268.9
Dec	_0.9	01	6.6	-9.6								972.1	00	984.2	955.8	974.4
MEAN	-11 5	01	0.0	-0.0								978.0	00	004.2	000.0	074.4
	-11.0											070.0				
Manuela	(08904	5)	74 9465				163 687E				78 M					
Manacia	1 (0000	<i></i>	74.5403				100.007L				70 1					
Jan	-24	01	4.6	_10.9								979.8	00	994 7	967.8	272.3
Feb	-11 2	00	-1.2	-70.5								974.5	00	988.6	962.1	264.0
Mar	-18.4	00	-7.9	-21.0								986.9	00	1002.8	968.0	255.7
Apr	-75.2	00	-120	-20.0								977 9	00	995.1	959.0	200.7
May	-23.2	00	-7.0	-33.4								989.1	00	1019.9	964.8	240.0
Jun	-22.0	00	-12.4	-35.6								990.1	00	1014.8	968.5	201.2
lul	-20.0	00	16.8	36.5								984.8	00	10124	955.9	240.4
	31.6	00	19.0	-30.3								975.0	00	995.6	957.7	243.3
Sen	23.5	00	15.5	35.9								983.3	00	1003.4	947.9	250.9
Oct	10.3	00	-13.5	-33.3								987.0	00	1003.4	956.0	250.5
Nov	-13.5	00	-11.4	-27.5	86	19	278	7.8	0.01	າຊາ	30	980.1	00	1007.3	962.5	204.0
Dec	4.8	00	-5.5	13.5	5.5	00	270	7.0 3.0	0.51	202	30	975 /	00	986.1	961.5	200.0
MEAN	-4.0	00	5.0	-13.5	5.5	00	207	5.5	0.71	230	50	973.4	00	500.1	501.5	210.5
	-10.7											302.0				
Marilyn (08034		79 9519				165 130E				75 M					
IVICI II YTT (00004		10.0040				103.130L				75 1					
Jan	-5.4	02	30	_15 5	33	00	227	15	0.46	176	14	981.0	00	9937	970.1	269.2
Feb	147	02	1 9	20.0	4.3	00	227	3.2	0.75	245	15	975.9	00	989.3	963.9	260.2
Mar	21.7	00	6.9	37 /	7.6	00	277	6.5	0.75	258	27	988.8	00	1005.2	972.8	200.0
Apr	-21.7	00	-0.9	12 9	6.6	00	200	5.6	0.00	180	21	979.5	00	995.5	961.9	232.2
Мау	-27.1	00	-10.0	-42.5	7.3	00	243	5.0 6.0	0.00	268	22	001 3	00	1023.7	961.9	247.3
	-20.7	00	-11.9	-40.0	1.5	00	247	0.0	0.01	200	21 ⊃0	001.0	00	1023.7	0.100	241.1
	-30.1	00	-12.0 20.4	-00.8 50.1	6.1	00	202	5.0	0.00	201	20 21	992.2	00	1013 /	900.7	237.0
	-30.1	00	-20.4	-02.1	7 /	00	203	5.0	0.03	210	21	076.9	00	001-3.4 006-0	900.0 0E1 0	230.1
Son	-35.3	00	-14.4	-49.2	1.4 7.5	00	204	5.9 6.6	0.01	200	20	5/0.0 09/ F	00	330.9	304.0	239.4
Seh	-21.1	00	-11.5	-42.0	1.5	10	20U 227	0.0	0.00	200	24	504.5	00	1002.8	952.7	247.1
Nov	-22.0	00	-10.2	-40.9 25 4	0.4	10	231	ວ.ວ າ	0.03	209	19	907.9 091 A	00	1009.0	900.2	251.4
Dec	-14./	00	-0.9	-23.1	4.0 2 /	00	237	3.4 2.4	0.71	170	10	0774	00	000.1	0.100	233.0
MEAN	-0.0	00	-0.2	-17.0	3.4	00	220	∠.4 17	0.71	1/9	12	002 E	00	307.U	302.7	200.9
	-20.0						200	+./	0.70			0.00				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Schwer	dtfeger	(0891	79.900S	;			169.970E				54 M					
Jan	-8.1	00	0.5	-21.9	2.8	00	142	0.5	0.20	176	15	979.8	00	992.4	969.5	266.6
Feb	-16.6	00	-4.0	-30.9	4.4	00	050	3.3	0.77	013	17	974.0	00	986.5	960.2	258.6
Mar	-24.8	00	-9.4	-40.6	5.6	00	056	4.6	0.80	092	18	986.6	00	1001.7	968.9	249.3
Apr	-32.5	00	-11.1	-46.9	5.0	00	050	4.0	0.80	016	21	977.1	00	993.2	959.9	242.3
Мау	-31.1	00	-11.5	-51.4	5.9	01	050	4.3	0.72	359	17	988.8	00	1021.7	960.6	242.9
Jun	-42.1	00	-16.1	-60.1	4.0	00	086	2.9	0.72	072	14	990.9	00	1016.8	964.8	231.7
Jul	-43.2	00	-21.5	-57.0	4.6	00	071	3.2	0.70	033	16	984.6	00	1012.4	953.8	231.0
Aug	-40.3	00	-18.5	-55.5	5.5	02	063	4.2	0.77	006	18	974.4	00	993.0	954.1	234.6
Sep	-31.9	00	-11.1	-48.9	5.2	00	061	4.2	0.79	010	16	982.4	00	1000.3	947.7	242.5
Oct	-26.5	00	-11.5	-43.4	4.4	01	046	3.0	0.68	014	18	985.4	00	1004.1	950.7	247.7
Nov	-16.9	00	-8.6	-27.2	3.8	00	048	1.9	0.50	092	12	979.3	00	1004.9	962.0	257.8
Dec	-9.3	00	2.2	-21.6	3.5	00	023	2.3	0.67	003	11	975.0	00	984.1	960.6	265.7
MEAN	-26.9				4.6		057	3.1	0.68			981.5				
Gill (089	11)		79.9855	;		1	178.611W	1			55 M					
Jan	-8.8	00	-1.6	-18.0	3.7	00	223	2.4	0.64	206	11	982.2	00	996.3	970.4	265.7
Feb	-17.4	00	-5.1	-34.0	4.2	00	226	2.9	0.68	278	14	974.7	00	990.3	958.0	257.7
Mar	-23.7	00	-7.2	-42.8	4.8	28	218	2.2	0.47	197	18	987.5	00	1001.8	966.8	250.3
Apr	-36.1	00	-16.1	-51.1	3.0	27	241	2.4	0.78	207	18	977.9	00	991.7	961.3	238.6
May	-31.5	00	-11.5	-49.9								989.2	00	1021.3	959.9	242.5
Jun	-41.0	00	-10.2	-58.5	3.6	67	275	2.0	0.55	216	16	992.7	00	1020.8	965.6	232.7
Jul	-46.2	00	-20.5	-61.9								985.8	00	1013.8	947.4	227.9
Aug	-43.9	00	-12.0	-58.6								975.4	00	995.9	957.3	230.9
Sep	-31.1	00	-14.2	-47.1								983.6	00	1002.5	945.9	243.3
Oct	-25.2	00	-3.9	-44.4								987.9	00	1006.7	950.9	248.8
Νον	-15.9	00	-3.4	-26.0								982.4	00	1004.8	965.4	258.6
Dec	-9.1	00	0.5	-21.5	3.2	05	192	1.7	0.54	190	10	977.6	00	986.1	964.2	265.8
MEAN	-27.5											983.1				
Lettau (0	08908)		82.518S	:		1	174.452W	/			55 M					
Jan	-5.1	54	1.6	-18.2	5.1	70	302	2.1	0.41	333	16	985.2	54	995.1	972.3	269.2
Feb	-16.0	20	-5.2	-26.8	6.5	63	133	1.3	0.19	250	20	976.2	20	987.8	961.1	259.0
Mar	-21.8	00	-6.4	-42.4	4.8	37	045	1.1	0.23	292	16	989.9	00	1006.7	966.5	252.1
Apr	-33.7	00	-12.6	-49.4	4.2	40	049	0.8	0.20	177	23	979.8	00	993.9	963.2	240.9
May	-27.5	00	-7.6	-48.9	5.5	35	120	1.5	0.26	194	18	991.9	00	1024.8	958.1	246.3
Jun	-42.1	00	-9.2	-58.9	3.3	41	148	1.3	0.39	326	13	993.7	00	1020.0	969.9	231.5
Jul	-42.9	00	-14.8	-59.0	3.0	21	115	0.9	0.29	165	17	986.8	00	1014.1	951.4	231.2
Aug	-40.9	00	-16.0	-54.1	0.5	40	338	0.2	0.35	052	12	977.4	00	999.4	953.8	233.8
Sep	-30.9	00	-11.1	-46.4	3.7	49	184	1.4	0.38	146	17	985.7	00	1004.3	949.3	243.3
Oct	-25.1	00	-6.8	-41.2	1.5	25	080	0.4	0.25	111	20	990.0	00	1008.2	954.0	248.8
Nov	-14.1	72	-8.0	-20.2								980.7	72	1008.9	965.3	260.6

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Elaine (C	8915)		83.134S	;			174.169E				60 M					
Jan	-6.1	02	2.8	-15.4	2.2	00	115	1.0	0.47	114	13	987.2	00	1000.1	975.5	268.0
Feb	-13.1	00	-1.1	-26.2	2.9	00	135	2.1	0.72	111	15	981.8	00	994.0	969.5	261.4
Mar	-22.3	00	-6.1	-42.4	4.2	00	133	3.1	0.74	115	21	994.8	00	1012.4	975.3	251.3
Apr	-28.5	00	-8.6	-48.0	2.5	00	133	2.0	0.79	111	18	985.4	00	999.4	967.1	245.6
May	-27.4	00	-5.0	-53.6	4.2	00	140	3.1	0.73	111	17	997.5	00	1030.0	967.5	246.0
Jun	-40.0	00	-12.4	-57.6	2.6	00	144	1.5	0.57	184	14	997.8	00	1025.4	974.7	233.3
Jul	-39.0	00	-14.2	-56.2	3.0	00	135	1.6	0.52	114	17	991.8	00	1017.8	962.1	234.8
Aug	-37.4	00	-18.8	-50.1	0.4	02	122	0.3	0.71	125	13	982.6	00	1005.5	956.9	237.0
Sep	-28.9	00	-16.9	-43.6	0.1	13	350	0.1	0.97	117	12	990.4	00	1008.2	959.8	245.0
Oct	-25.7	00	-16.0	-35.1	0.2	03	088	0.2	0.73	111	14	994.9	00	1012.1	956.7	247.9
Nov	-16.1	00	-11.5	-20.1	2.8	04	121	1.8	0.64	114	15	988.4	00	1013.2	967.1	257.9
Dec	-9.7	00	-6.1	-17.1	1.7	00	123	1.2	0.74	115	10	984.0	00	994.1	970.3	264.7
MEAN	-24.5				2.2		132	1.5	0.69			989.7				
Larsen I	ce (089	926)	66.9495	:			60.897W				17 M					
Jan	-0.2	02	5.8	-8.4	3.8	02	131	0.6	0.16	198	14	981.9	00	1000.2	963.0	274.4
Feb	-1.8	01	5.6	-13.8	3.6	00	014	1.6	0.43	046	13	976.5	00	1000.2	962.0	273.2
Mar	-11.4	00	1.2	-24.6	4.9	00	254	3.0	0.62	297	19	989.5	00	1017.4	963.5	262.5
Apr	-18.1	00	-5.0	-30.9	5.3	58	249	3.8	0.72	245	22	986.0	00	1000.4	960.1	256.1
May	-23.7	00	-11.1	-41.0								993.4	00	1015.3	971.0	249.9
Jun	-26.9	00	0.5	-45.2								988.7	00	1007.5	961.8	247.0
Jul	-25.3	01	-4.0	-37.4	4.9	22	278	1.8	0.37	269	17	989.7	01	1012.0	952.5	248.7
Aug	-20.1	00	-1.9	-40.6	4.3	25	319	2.4	0.55	260	24	988.5	00	1011.5	957.0	253.9
Sep	-15.8	00	-2.2	-35.0	3.5	02	270	1.9	0.55	248	12	997.4	00	1010.5	975.9	257.5
Oct	-17.8	00	4.2	-36.1	4.5	00	288	1.1	0.24	038	17	987.3	00	1002.6	968.5	256.3
Νον	-7.4	02	3.6	-21.2	2.3	01	011	0.2	0.08	246	12	985.8	01	1001.8	971.2	266.9
Dec	-1.5	02	7.9	-12.8	1.9	00	045	0.6	0.29	240	19	982.9	00	1000.2	959.5	273.1
MEAN	-14.2											987.3				
Butler Is	(08902	2)	72.207S				60.160VV				91 M					
			40.0				100					070.0				074.0
Jan	-1.4	04	10.2	8.5	3.1	02	199	0.6	0.21	008	11	972.0	02	988.9	964.1	274.0
Гер	-8.2	07	1.6	-16.6	3.6	08	194	1.6	0.44	186	16	965.7	08	986.2	950.9	267.7
Mar	-17.1	06	-2.5	-28.6	4.8	09	191	3.3	0.69	181	21	980.8	07	1001.8	963.3	257.5
Apr	-21.0	00	-4.0	-30.0	5.4	74	184	5.3	0.99	187	16	976.6	01	987.6	962.7	253.9
May	-23.7	00	-9.4	-33.9	9.8	74	193	9.5	0.97	179	22	984.0	00	1003.3	961.5	250.6
Jun	-26.3	00	-4.4	-38.5								9//.8	00	996.0	953.3	248.4
Jui	-24.8	00	0.4	-35.1		- 20	220	47	0.44	104	4.0	9/8.4	00	1001.3	942.7	249.9
Aug	-17.6	00	3.9	-35.1	4.1	29	238	1.7	0.41	101	16	9/2.6	01	994.7	943.2	257.5
Sep	-10.2	00	4.8	-20.2	5.0	04	199	1.8	0.59	190	10	905.5	00	997.6	900.5	258.0
Nev	-19.4	00	0.4	-30.5	5.2	44	190	4.ð	0.91	101	15	9/0.8 075.0	00	331.7	900.8	255.4
Dec	-10.9	03	4.2	-19.1	2.5	25	10/	1.0	0.73	100	11	973.9	03	900.9	304.0	204.2
MEAN	-3.1	02	ő.ö	-14.4	2.4	00	350	U.7	0.30	190	- 11	9/1.0 076 F		904.2	949.5	212.3
	-13.0											5.015				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Uranus	GI (089	20)	71.430S				68.930VV				780 M					
Jan	-2.0	22	7.2	-12.9	3.1	20	030	2.3	0.74	053	19	902.5	21	917.1	887.6	279.2
Feb	-4.3	27	4.9	-14.5	5.9	25	030	4.8	0.82	046	22	894.2	26	915.4	874.2	277.6
Mar	-10.2	00	2.9	-24.2	4.0	00	800	3.1	0.78	048	22	906.5	00	929.5	881.6	270.4
Apr	-8.2	00	-0.5	-22.8	5.7	00	045	4.9	0.86	052	22	898.9	00	914.0	879.8	273.2
May	-16.1	00	-1.1	-30.4	3.8	00	357	3.1	0.82	353	18	909.4	00	925.7	890.2	264.1
Jun	-22.7	00	-3.6	-35.5	3.5	00	359	3.0	0.84	357	20	902.8	00	922.6	871.9	257.9
Jul	-15.6	00	-2.1	-34.6	5.7	00	018	4.6	0.81	353	22	902.8	00	925.1	864.2	265.2
Aug	-15.8	00	-2.1	-37.5	8.1	00	004	7.4	0.91	352	30	905.3	00	926.4	870.6	264.8
Sep	-8.7	00	2.5	-23.6	4.2	00	006	3.6	0.85	353	20	914.4	00	931.0	893.5	271.4
Oct	-16.5	17	-3.4	-30.4	3.0	17	017	2.0	0.66	055	17	901.5	17	912.5	882.8	264.5
Nov	-6.3	59	2.8	-13.8	2.4	58	359	1.4	0.59	055	15	904.7	58	914.0	894.9	274.6
Dec	-1.9	13	9.2	-12.8	3.8	11	041	2.7	0.72	053	17	900.7	11	915.6	880.8	279.5
MEAN	-10.7				4.4		017	3.4	0.78			903.6				
Limbert	(08925)	75 4225				59 851W				40 M					
Linikort	(00020	,					00.00111				10 111					
Jan	-3.3	00	52	-15.9	4.0	09	146	0.8	0.20	215	14	983.9	00	999.6	973.2	271 1
Feb	-121	00	0.0	-24.0	5.5	00	210	3.5	0.64	204	26	978.5	00	998.7	964.2	262.7
Mar	-23.5	00	-2.6	-35.6	5.8	10	210	49	0.85	210	28	994.2	00	1012.8	976.1	250.1
Apr	-25.7	00	_10.4	_44_4	0.0		210	1.0	0.00	2.10	20	990.0	00	1001 1	974 7	248.2
May	-31.9	00	_17.9	-47.4								998.1	00	1015.6	983.1	241.4
Jun	-35.5	00	-121	-52.8								990.7	00	1009.7	966.8	238.3
Jul	-30.1	00	-4.8	-49.6								992.2	00	1013.9	969.4	243.6
Aug	-27.3	00	_4.2	-42.8								984.2	00	1006.1	958.4	240.0
Sen	-26.5	00	_4.9	-40.4								997 7	00	1011 5	978.4	246.8
Oct	-25.7	00	_1.2	-42.4								990 1	00	1004.3	971.4	248.2
Nov	-16.1	00	-7.4	-72.4	17	02	205	nα	0.51	360	12	988.4	00	998.7	976.1	257.9
Dec	5.5	11	-2.7	20.6	3.0	11	3/3	0.0	0.01	055	12	982.4	11	994 5	968.2	267.0
MEAN	21.9		1.0	-20.0	5.0		545	0.0	0.10	000	12	902.4		334.5	300.2	203.0
	-21.5											303.2				
Racer F	Rock (DE	947)	64 0675				61 61 3\/				17 M					
		,547)	04.0073				01.01344				17 101					
Jan																
Feh																
Mar																
Apr																
Моу																
Jup																
Aug																
Ser																
Oct	47	01	24	12.0								086 4	01	1001.0	071 0	260 F
Nev	-4./	01	3.1 E 4	-12.0								007 F	01	1001.0	3/1.0	203.3
Dec	-1.1	03	5.1	-3.2								307.3	02	1000.0	312.4	213.1
Dec	0.2	03	1.6	-5.5								907.1	00	1007.8	30∠./	∠/4.4

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
	(-)		(-)	(-)	(,	,		(,	(,		((()
Bonapa	rte Pt (0	8923	64.7785				64.067W				8 M					
Jan	1.9	00	6.2	-2.9												
Feb	1.6	00	6.6	-1.5												
Mar	-0.3	00	5.8	-5.5												
Apr	0.2	00	4.2	-6.0												
Mav	-4.4	01	3.6	-12.4												
Jun	-8.3	01	2.2	-17.2	5.7	04	077	4.2	0.75	121	22					
Jul	-7.6	01	1.5	-21.2	6.0	33	084	4.3	0.73	245	25					
Aua	-6.7	00	2.8	-19.9	4.8	10	083	3.1	0.64	214	24					
Sep	-2.9	01	4.6	-10.1	2.6	04	082	0.9	0.34	228	21					
Oct	-4.6	01	3.0	-13.5	5.5	00	119	2.9	0.53	175	26					
Nov	-1.4	02	4.2	-8.8	2.5	05	081	1 7	0.66	263	13					
Dec	1.3	02	61	-3.9	3.2	01	107	1.9	0.59	138	22					
MEAN	-2.6	02	0.1	0.0	0.2			1.0	0.00	100						
11127 (14	2.0															
Sky-Blu	(08917	`)	74 7925				71 488VV				1556 M					
	(00011	,									1000 11					
Jan	-9.9	01	0.5	-22.6	74	00	024	53	0 71	339	26	805.2	00	818 7	796.3	280.1
Feb	-12.9	00	-0.1	-29.2	8.4	00	024	6.7	0.80	021	24	797.4	00	818.7	784.1	277.7
Mar	-21.2	00	-6.8	-37.8	6.6	00	032	4.2	0.63	267	27	808.7	00	828.0	789.2	267.8
Apr	-18.0	00	-8.1	-42.9	9.7	00	032	8.6	0.89	015	30	801.9	00	811.2	783.9	271.8
Mav	-27.6	00	-10.6	-43.4	6.0	00	030	31	0.52	008	32	809.6	00	821.5	793 7	260.8
Jun	-31.7	00	-13.2	-50.5	4 7	00	026	2.6	0.55	030	30	801.7	00	819.8	778.7	257.2
Jul	-24.9	00	-12.4	-45.8	13.6	00	033	11.2	0.82	356	46	801.5	00	822.0	772.9	264.5
Aug	-22.8	46	-11.9	-44.2	16.6	50	007	15.0	0.92	015	42	799.9	47	818.6	776.3	266.9
Sep	-17.0	35	-91	-30.8	91	40	003	7.0	0.76	285	32	812.0	35	825.9	798.2	271.9
Oct	-25.8	00	-8.9	-40.9	6.4	09	069	3.5	0.55	111	26	802.6	00	817.6	785.4	263.4
Nov	-17.3	00	-0.9	-35.9	5.6	00	025	3.3	0.59	035	20	804.6	00	817.6	797.8	272.3
Dec	-9.3	00	1.9	-21.9	7.7	00	022	6.4	0.83	022	28	804.1	00	817.2	788.6	280.9
MEAN	-19.9				8.5		24	6.2	0.71			804.1				
Kirkwoo	od Is (08	3930)	68.340S				69.007W				30 M					
	Ì	,														
Jan	-0.4	00	3.9	-4.8	4.7	00	075	2.4	0.52	054	14	981.2	02	997.7	960.4	274.2
Feb	-0.5	00	3.5	-7.6	8.1	00	007	4.8	0.59	050	23	974.8	00	995.6	950.8	274.7
Mar	-5.2	00	1.1	-15.7	5.6	00	127	1.3	0.23	078	27	987.5	01	1014.2	961.8	268.9
Apr	-2.2	06	0.9	-8.9	9.1	07	064	6.1	0.68	090	29	979.0	09	998.4	954.2	272.6
Mav	-11.5	00	-0.1	-22.6	4.2	00	146	1.1	0.26	245	15	992.4	03	1012.2	970.1	262.3
Jun	-19.0	00	0.1	-31.0	5.3	07	163	0.5	0.10	006	24	987.9	02	1006.6	954.9	255.0
Jul	-14.0	00	1.1	-35.8	5.7	01	038	1.5	0.26	043	25	987.8	02	1008.0	946.7	260.1
Aua	-14.2	00	1.0	-38.8	6.3	00	342	2.3	0.36	261	31	991.9	03	1014.9	959.8	259.4
Sep	-8.4	00	1.5	-25.6	5.0	00	048	0.9	0.19	066	19	996.8	03	1014.2	972.2	265.0
Oct	-11.7	00	0.2	-27.4	7.3	00	092	3.1	0.42	031	27	982.7	02	997.0	960.4	262.8
Nov	-3.7	00	2.4	-13.1	4.7	00	055	1.1	0.24	020	19	984.5	02	1000.4	969.4	270.7
Dec	-0.2	00	5.0	-4.8	6.0	00	058	3.4	0.57	037	20	980.9	03	998.4	955.6	274.5
MEAN	-7.6				6.0		056	1.8	0.37			985.6				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Dismal Is	s (0893	2)	68.087S	;			68.825W				10 M					
Jan	0.6	01	4.1	-4.9	4.6	00	049	2.6	0.57	053	18	983.3	02	1000.4	962.5	275.1
Feb	0.5	00	4.2	-4.4	9.0	00	012	7.0	0.78	005	22	977.2	02	998.4	953.5	275.5
Mar	-3.2	00	2.0	-12.3	5.9	00	062	1.4	0.23	064	25	989.9	02	1017.0	964.6	270.7
Apr	-1.2	03	2.3	-7.1	8.4	03	040	6.2	0.74	067	27	981.6	06	1001.8	957.0	273.4
May	-10.6	00	1.1	-21.1	4.5	01	041	0.8	0.19	351	20	994.7	03	1014.2	972.2	262.9
Jun	-18.4	00	0.7	-30.8	5.6	00	020	2.3	0.41	001	24	990.3	03	1009.4	957.0	255.5
Jul	-13.5	00	1.7	-34.8	6.2	15	021	4.2	0.67	004	27	990.3	01	1010.8	950.1	260.3
Aug	-12.8	00	1.0	-34.0	7.7	15	360	6.7	0.87	340	31	994.9	02	1017.7	963.9	260.7
Sep	-8.1	00	2.8	-28.0	4.8	00	015	2.3	0.48	358	20	999.4	03	1017.0	974.2	265.1
Oct	-10.2	00	1.6	-26.9	6.7	00	066	2.9	0.44	029	29	985.1	02	999.7	963.2	264.1
Nov	-2.7	00	4.7	-12.5	4.2	00	025	1.8	0.42	355	18	987.0	03	1002.5	972.9	271.4
Dec	0.5	00	4.7	-3.3	5.4	00	043	3.6	0.66	031	21	983.2	02	1001.1	957.7	275.0
MEAN	-6.6				6.1		027	3.3	0.54			988.1				
Clean A	ir (0898	37)	90.000S	:							2835 M					
Jan	-25.4	00	-14.9	-38.0	4.5	00	002	3.8	0.85	295	14	687.1	00	697.7	674.7	275.8
Feb	-40.6	00	-28.4	-51.6	4.4	00	023	3.6	0.82	356	12	681.7	25	695.3	669.7	261.9
Mar	-50.8	00	-31.0	-66.6	4.8	00	021	3.7	0.76	311	12					
Apr	-53.6	00	-35.6	-67.8	4.5	00	009	3.7	0.82	010	13					
Мау	-57.1	00	-34.8	-68.2	4.5	00	032	3.7	0.84	008	14					
Jun	-62.9	00	-48.0	-71.8	4.0	00	043	3.1	0.78	006	12					
Jul	-54.4	00	-41.1	-73.5	5.9	00	003	5.1	0.86	360	15					
Aug	-58.6	00	-37.6	-75.4	5.1	00	010	4.2	0.82	359	14					
Sep	-57.5	00	-33.4	-70.0	3.1	00	057	1.8	0.58	013	10					
Oct	-47.8	00	-25.6	-60.9	4.1	00	020	2.9	0.70	354	15					
Νον	-38.1	00	-23.1	-46.5	3.3	00	018	2.0	0.61	077	09					
Dec	-29.1	00	-16.6	-38.5	2.6	00	025	1.9	0.73	292	07	681.5	00	691.3	671.4	272.3
MEAN	-48.0				4.2		019	3.2	0.76							
Henry (()8985)		89.001S				1.025W				2755 M					
Jan	-23.3	00	-12.6	-34.6	4.9	00	028	4.2	0.85	027	14	696.3	00	707.0	683.6	277.1
Feb	-38.2	00	-26.9	-49.4	5.1	00	049	4.5	0.88	010	11	690.7	00	704.8	678.5	261.2
Mar	-47.7	00	-28.4	-64.0	4.8	00	043	4.3	0.89	034	10	694.8	00	707.7	680.8	250.2
Apr	-52.2	00	-32.2	-63.5	4.3	00	035	3.9	0.90	022	11	689.6	00	705.8	677.6	245.7
May	-54.1	00	-32.4	-65.6	5.5	00	050	5.0	0.91	037	13	696.6	00	715.3	680.1	242.9
Jun	-58.9	00	-45.0	-67.1	5.1	00	055	4.6	0.90	035	11	687.6	00	703.6	668.9	238.5
Jul	-52.9	00	-38.6	-67.6	6.7	00	034	6.0	0.90	037	14	690.8	00	708.0	677.3	244.8
Aug	-55.6	00	-35.6	-71.2	6.2	00	032	5.3	0.86	031	13	679.6	00	699.8	664.8	242.9
Sep	-56.3	25	-40.4	-67.5	5.6	28	075	4.3	0.77	048	12	689.9	25	700.5	680.0	241.2
Oct	-44.2	50	-22.8	-52.4	5.6	50	045	4.6	0.82	008	15	695.7	50	715.9	684.6	254.0
Νον	-36.4	00	-25.9	-43.9	3.3	00	047	2.8	0.83	052	11	688.6	00	712.3	677.2	263.4
Dec	-26.8	00	-16.1	-36.4	1.6	00	058	1.2	0.74	059	06	690.6	00	700.7	679.9	273.9
MEAN	-45.6				4.9		045	4.1	0.85			690.9				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Nico (08	3924)		89.000S				89.669E				2935 M					
Jan	-24.7	01	-14.8	-36.1	4.1	00	279	3.4	0.81	259	12	677.5	00	688.0	664.6	277.7
Feb	-39.6	00	-29.0	-50.5	4.4	00	312	3.5	0.81	240	12	671.1	00	685.9	658.9	261.8
Mar	-50.6	00	-32.2	-68.0	4.2	00	303	3.1	0.74	238	12	674.8	00	686.7	662.2	249.1
Apr	-53.5	00	-37.5	-68.0	2.7	00	279	2.1	0.77	267	11	669.0	00	685.2	657.3	246.4
Мау	-55.2	41	-33.0	-68.2	5.0	41	324	4.0	0.80	269	12	679.2	41	695.8	659.8	242.9
Jun	-60.6	19	-45.6	-71.5	3.6	21	312	3.0	0.84	274	11	667.7	19	682.6	649.6	238.7
Relay S	tation ((08918	74.017S				43.062E				3353 M					
Jan	-28.8	00	-17.9	-42.5	7.0	00	104	6.6	0.95	125	18	645.4	00	656.7	635.3	277.0
Feb	-40.6	00	-29.1	-50.8	7.4	00	114	7.0	0.95	083	17	637.5	00	648.3	628.0	264.5
Mar	-50.0	00	-39.2	-59.5	7.2	00	131	6.9	0.96	159	16	643.3	00	655.9	634.7	253.1
Apr	-54.0	00	-36.5	-65.5	6.8	00	135	6.3	0.92	143	17	639.2	00	651.6	623.6	249.0
May	-50.8	00	-38.1	-64.9	7.8	00	117	7.4	0.95	114	16	646.8	00	666.4	634.6	251.9
Jun	-55.0	00	-39.5	-70.1	7.6	00	126	7.3	0.96	118	15	638.2	00	652.7	620.8	248.0
Jul	-55.9	00	-40.9	-64.6	8.2	00	123	8.0	0.97	148	19	638.8	00	652.1	625.3	247.0
Aug	-60.3	00	-46.9	-69.5	8.2	00	135	8.0	0.97	143	20	629.4	00	641.1	623.3	243.0
Sep	-57.8	00	-44.6	-74.1	7.1	00	123	6.7	0.93	077	17	633.1	00	644.2	624.2	245.5
Oct	-49.9	00	-39.4	-62.1	7.6	00	131	7.4	0.97	128	17	642.6	00	651.9	630.3	253.4
Nov	-40.2	00	-27.0	-51.4	5.5	00	118	5.2	0.94	069	15	637.1	00	646.5	624.2	265.0
Dec	-29.8	00	-14.8	-43.9	5.5	00	110	4.9	0.89	125	13	641.0	00	650.2	630.1	276.3
MEAN	-47.8				7.2		123	6.7	0.95			639.4				
Dome F	uji (089)	J4)	77.310S				39.700E				3810 M					
Jan	-31.7	00	-19.5	-48.0	3.3	00	281	2.4	0.72	271	12	605.7	00	618.1	594.5	278.7
Feb	-45.2	00	-32.9	-59.0	2.6	00	278	1.2	0.44	236	07	597.0	00	607.1	588.8	264.2
Mar	-54.9	00	-40.0	-66.1	1.9	00	009	0.9	0.49	359	08	601.9	00	613.9	593.3	252.3
Apr	-59.4	00	-39.9	-71.4	0.5	00	134	0.2	0.45	118	08	596.8	00	607.2	581.4	247.8
May	-56.3	00	-40.1	-68.9	0.7	00	228	0.5	0.75	224	09	604.8	00	627.0	592.1	250.4
Jun	-60.5	00	-35.6	-76.5	0.1	00	000	0.0	0.00	031	04	596.5	00	610.4	579.0	246.5
Jul	-61.5	00	-46.9	-72.6	0.1	00	000	0.0	0.00	329	02	597.5	00	609.8	583.9	245.2
Aug	-66.1	00	-48.1	-77.2	0.6	00	028	0.5	0.81	041	11	588.4	00	599.2	580.8	241.0
Sep	-62.8	00	-34.0	-79.6	0.9	00	251	0.5	0.57	246	11	590.5	00	602.2	579.8	244.6
Oct	-51.2	48	-29.2	-68.5	1.9	48	327	0.9	0.51	304	09	602.6	48	613.0	590.1	256.6
Nov	-42.2	08	-28.5	-56.4	1.7	08	065	0.2	0.12	301	07	594.8	08	604.1	585.1	267.7
Dec	-29.5	32	-14.8	-46.5	2.2	32	026	0.7	0.31	039	80	602.8	32	608.8	591.9	281.7
MEAN	-51.8				1.4		306	0.4	0.43			598.3				

	Mean	% of			Mean	% of						Mean	% of			
	Air	Mon	Max Air	Min Air	Wind	Mon	Result			Max		Air	Mon	Max Air	Min Air	Potential
	Temp	Data	Temp	Temp	Speed	Data	Wind			Wind		Press	Data	Press	Press	Temp
Mon	(C)	Abs	(C)	(C)	(m/s)	Abs	(dir	vv)	Con	(dir	vv)	(mb)	Abs	(mb)	(mb)	(K)
Mizuho ((21359))	70.700S	;			44.290E				2260 M					
Jan	-12.3	00	-0.9	-27.2	8.2	00	089	8.0	0.97	098	15	743.2	00	754.2	733.0	283.9
Feb	-20.5	00	-5.6	-39.4	10.1	00	088	9.9	0.98	089	24	736.1	00	750.3	724.6	275.8
Mar	-28.1	00	-14.8	-47.2	11.4	00	097	11.1	0.97	110	21	743.3	00	758.1	731.9	266.7
Apr	-32.4	04	-4.6	-53.5	10.9	04	102	10.2	0.94	127	23	740.1	04	754.7	724.7	262.5
May	-33.8	00	-13.5	-50.2	12.6	00	102	12.4	0.98	073	25	746.3	00	763.2	729.5	260.2
Jun	-38.9	07	-16.9	-51.0	12.7	07	105	12.5	0.99	101	22	738.5	07	753.3	722.6	255.5
Jul	-38.5	02	-13.1	-50.5	13.4	02	104	13.2	0.99	134	22	738.0	02	750.8	720.8	256.0
Aug	-39.9	01	-26.6	-49.4	11.8	03	105	11.4	0.97	131	26	728.9	01	745.8	719.7	255.4
Sep	-36.4	03	-8.8	-49.5	10.9	03	099	10.6	0.97	072	25	734.0	03	745.9	723.9	258.7
Oct	-30.7	00	-16.1	-49.2	12.1	00	103	11.9	0.98	111	23	742.3	00	752.5	728.5	264.1
Nov	-21.4	00	-9.4	-40.4	7.2	00	092	7.0	0.97	111	15	738.0	00	748.2	723.6	274.7
Dec	-13.9	00	-2.5	-26.9	7.8	00	094	7.5	0.96	069	21	739.4	00	747.9	725.7	282.7
MEAN	-28.9				10.8		099	10.4	0.97			739.0				

4.2. Three Hourly Data Summaries

After the data are received from Service ARGOS, ten minute interval data are created for each AWS unit. The data are calibrated for the individual station instruments, but no other corrections are made. This data set is created for those users who need fairly current information. These data are available by anonymous FTP (see Section 8).

The 10 minute data set for each AWS unit for the month is scanned to pick out the nearest observation within forty minutes of the UTC hours 00, 03, 06, 09, 12, 15, 18, and 21 to produce the three hourly data set. If valid data are not available within forty minutes of the three hourly time interval, then the entry is left blank to indicate missing data. The means, standard deviations, resultant wind speed and direction, the distribution of temperature, and wind speed with wind direction are determined from the three hourly observations and are presented as a monthly summary at the bottom of each page. A wind direction value of zero indicates a wind speed less than 0.50 m s⁻¹. North is indicated by a value of 360 degrees. The maximum and minimum values are taken from the complete 10 minute data set, not the three hourly data set. The appropriate monthly data from the three hourly data set are used for the monthly summaries presented in Section 4.1. In the presence of sunlight the air temperatures are questionable if the wind speed is less than 1 m s⁻¹. These summaries are available by anonymous FTP (see Section 8). If you are unable to access the Internet, we will send the information either on diskettes or paper. Please contact us for further information (the address is at end of Section 8).

5. AWS CALIBRATION

5.1. Temperature

The external and internal temperatures are calibrated using a 1000 ohm 0.05% resistor in place of the platinum resistance thermometers with 1000 ohms resistance at 0°C. Because the other resistances in the temperature circuit are known only to 1%, the temperature calibration will vary from one electronic unit to another. The correction factor determined from the calibration resistor is programmed into the read-only-memories for each unit. After the correction factors have been programmed into the AWS, a calibration box with 0.1% resistors is used to check the temperature calibration.

5.2. Pressure

The atmospheric pressure transducer is a Parascientific model 215A Digiquartz[®] pressure gauge. The transducer frequency changes from a nominal 40 kHz at zero pressure to a nominal 36 kHz at 1000 hPa. The pressure resolution is about 0.05 hPa.

Paulin aneroid barometers calibrated against a mercury barometer of 10 mm bore are used to check the pressure gauge calibration. Comparisons are made between AWS units, a Parascientific Model 760-16B accurate to +/- 0.1 hPa, and with the mercury barometers at Scott Base, Antarctica. The calibrations should be within +/- 0.2 hPa.

The reference vacuum on the older pressure transducers can degrade with time with a maximum observed 4 hPa shift to lower pressure after fifteen years. Recalibration of each pressure transducer would be desirable when each unit is serviced.

5.3. Wind direction and Speed

The Belfort model 123 aerovane measures wind direction and speed. The aerovane rotates a potentiometer wiper, and the fraction of full scale of the potentiometer is measured. The wind direction is checked by positioning the aerovane to the cardinal directions relative to the boom supporting the aerovane. North or the potentiometer zero is towards the antenna on the boom and has a maximum dead zone of 3°. During the field installation, the boom is usually aligned along the north-south line as determined from the sun's azimuth, longitude, and Greenwich Mean Time. In some cases the 180° end of the boom may point in

a direction other than south. At Manuela site, the 180° end of the boom points up the glacier and a correction is added to the data during processing. At Byrd site the wind is usually out of the north so the boom was rotated 120° and the correction added during the data processing. The wind speed is determined from the aerovane tachometer voltage output as 0.0472 volt per meter per second. The aerovane tachometers are spun at 1800 rpm with a load of 1071.5 ohms, and the output should be 9.20 +/-0.05 vdc.

Additional wind sensors were used with AWS units for 2000. These were the R.M. Young wind monitor model 05103 and the Hydro-Tech WS-3 anemometer with the WP-3 aerovane. The Hydro-Tech system was used for measuring wind speed in the Adelie Coast area. The Hydro-Tech WS-3 is a disk rotor, 3 in. high and 12 in. overall diameter, with radial cups, and the threshold sensitivity is 3 mph. The anemometer utilizes a commercial dc tachometer generator. Output is 0 to +5 vdc (and 0 to 1 ma) over the desired full scale wind speed of 85 m/s. Accuracy is +/- 2%.

The R.M. Young monitor 05103 also used a 10,000 ohm potentiometer with a 3° dead zone so that the wind direction was recorded identically with the Belfort/Bendix aerovanes. The wind speed was from the range of 0 to 1.0 volt full scale corresponding to 50 m/s. Thus the calibration for wind speed was a nominal .195 m/s/bit for the R.M. Young with +/- 1% up to 50 m/s.

5.4. Relative Humidity

The Vaisala HMP-35A/45A humidity sensor output voltage varies linearly with relative humidity (U). The sensor is calibrated by placing it over saturated salt solutions with known relative humidities at room temperature: sodium chloride (U=75%), and lithium chloride (U=12%) are used. In addition, a dry inert gas, forced past the sensor, gives a 0% U, and the sensor output can be zeroed. Then, the gain setting can be set directly using a salt solution with a high relative humidity, such as sodium chloride. The resolution of the humidity sensor is about 1% and the drift is 2 to 3% per year in the field. The relative humidity data are not included on the summary pages but are included in the 3 hourly data sets.

5.5. Vertical Air Temperature Difference

Two junction thermocouples are used to measure the air temperature difference between 3 m and 0.5 m on the tower. The output is about 78 microvolts for 1°C temperature difference between the junctions at 0.0° C, dropping to 60 microvolts at -80° C. Zero output is adjusted to 0.4 volts, so that 0 to 1 volt corresponds to a -6° C to $+9^{\circ}$ C range of air temperature differences between 3 m and 0.5 m. The resolution is 0.05° C. Calibration of the individual systems is done by applying known voltages to the amplifier input. The vertical temperature difference data are not included on the summary pages but are included in the 3 hourly data sets.

6. AWS OPERATIONS SUMMARY FOR 2002

6.1. AWS Performance

Forty-seven AWS units were installed at the start of 2002 and 51 were installed by the end of 2002. Based on the installation months the AWS units delivered 85% of the temperature data, 82% of the pressure data and 72% of the wind data during 2002. Complete data sets were received from 12 AWS units and 38 AWS units operated for the installed period. Eleven AWS units were not received for one month or more during the year or stopped during the year. Some of the stations were not received during the winter months due to low battery voltage.

The wind system has the poorest performance. If the wind speed is zero or the wind direction is constant for extended periods (days to months) then the data is considered invalid. The reason for this behavior is not known but is believed to be due to the build up of frost on the wind system. This usually occurs in the winter season and at several AWS sites. The wind speed is most frequently zero when the wind direction is constant.

Site	Performance
D-10	The station transmitted erratically from July through the beginning of October. The relative humidity sensor and delta-T sensor were not functioning.
D-47	Temperature sensor not functioning. Station stopped transmitting 4 January and began again 27 February. Station transmitted erratically from April through early August with another break the first half of September. No relative humidity or delta-T sensors.
Dome C II	OK.
Port Martin	The aerovane was not functioning. No delta-T or extra high wind speed sensor. Pressure corrected for high wind speed conditions.
Cape Denison	Station stopped transmitting 29 April and resumed 27 May. Several transmission gaps of a week or more in April, May, and September. Pressure corrected for high wind speed conditions.
Penguin Point	The station stopped transmitting from 15 May to 21 June. Pressure corrected for high wind speed conditions.
Byrd	Station transmitted from 3 to 8 October only.
Mount Siple	Site has a "dog house" AWS without wind speed and direction. Pressure sensor not functioning correctly January and February.
Theresa	Delta-T sensor buried.
Doug	Aerovane not functioning in July. Relative humidity sensor not functioning. Station transmitted erratically in September and stopped transmitting on 8 October.
Elizabeth	Aerovane irozen ine last part of September.
Brianna	transmitting 3 November.
Harry	The delta-T sensor is not functioning. The aerovane was "frozen" occasionally from June through November.
Erin	The aerovane was "frozen" occasionally from May through July.
Siple Dome	Aerovane "frozen" occasionally from April through November. Delta-T sensor not installed.
Swithinbank	Station stopped transmitting 8 October. Delta-T sensor not functioning.
Marble Point	OK.
Ferrell	New station installed 10 January.
Pegasus North	Station stopped transmitting on 25 January. Delta-T not functioning. Station resumed transmitting 4 November.
Pegasus South	Station stopped transmitting on 6 May and resumed on 24 June. Relative humidity sensor not functioning. Aerovane "frozen" from June through October. Delta-T erratic all year.
Minna Bluff	Station started transmitting 10 July. Delta-T sensor not functioning. Aerovane occasionally "frozen" July through November. Station stopped transmitting 13 December.
Linda	Aerovane occasionally "frozen" April through October.
Willie Field	Station replaced 29 January.
Windless Bight	Station stopped transmitting 12 December due to low battery voltage.
Herbie Alley	Pressure functioned erratically August, October, and November.
Cape Spencer	Station stopped transmitting 25 December.
Cape Bird	OK.
Laurie II	Station replaced 17 January. Delta-T sensor not functioning. Aerovane occasionally "frozen" in September.
Whitlock	Station replaced 7 February. Delta-T sensor not functioning. Aerovane "frozen" most of April and May and parts of June and July.
Possession Island	Site has a "dog house" AWS without wind speed and direction.
Manuela	Aerovane broken.

Marilyn	Station replaced 30 January. Aerovane occasionally "frozen" May through November.
Schwerdtfeger	Relative humidity sensor not functioning from mid February through November Aerovane "frozen" occasionally in July.
Gill	Relative humidity sensor not functioning. Aerovane "frozen" occasionally in
October.	
Lettau	Transmitting with many gaps in January, November, and December. Aerovane "frozen" occasionally from March through December.
Elaine	OK.
Larsen Ice Shelf	Aerovane "frozen" occasionally in July.
Butler Island	Aerovane not functioning beginning of January and "frozen" occasionally from May through November. Pressure continues to need correction due to the failure of the precision time-based correction to the system clock.
Uranus Glacier	Large gaps in transmission in March, November, and some of December.
Limbert	Delta-T sensor not functioning. Aerovane not functioning. Station stopped
	transmitting in July and resumed in September due to low battery voltage.
Racer Rock	Station transmitted erratically from the end of May to October due to low battery voltage. Station stopped transmitting 30 November.
Bonaparte Point	Relative humidity and delta-T sensor not functioning. Aerovane not functioning January through May, July, and October through December. Pressure is too low and has been removed.
Sky Blu	Aerovane "frozen" occasionally in September.
Kirkwood Island	New station installed 21 May. Aerovane not functioning properly in May.
Dismal Island	New station installed 22 May. Aerovane not functioning properly in May.
Clean Air	Occasional problems with relative humidity sensor. Pressure functioning erratically February through November.
Henry	Aerovane occasionally "frozen" June through September. Station stopped transmitting 20 September and resumed transmitting 30 October as the battery recharged in the austral spring.
Nico	Aerovane occasionally "frozen" in August and September.
Relay Station	OK.
Dome Fuji	Repaired station installed on 22 December.
Mizuho	No relative humidity or delta-T sensors. Occasional gaps in transmission during
winter months.	

6.2. AWS Antarctic Field Activities

McMurdo area

On 1 February, Ferrell site was visited by Jason Vandervest. A completely new station was installed (AWS 21355) with help from the Twin Otter crew. Later on 1 February, a new station site was establish near Cape Crozier (AWS 21364). This site will be called Laurie II.

On 3 February, Pegasus North and Pegasus South (AWS 8937) sites were visited by Dr. John Cassano and Jason Vandervest. AWS 8928 at Pegasus North was removed and a new station (AWS 21357) was installed. At Pegasus South the aerovane was replaced.

West Antarctica

Dr. John Cassano, Dr. Chris Shuman, and Jason Vandervest flew to Siple Dome on 15 January to conduct AWS field work in West Antarctica. GPS coordinates were recorded for Siple Dome (8938) site, and it was noted that the boom was not aligned with north. On 18 January, the team went to Brianna (21361) site. Two battery boxed and 1 battery cable were replaced, and GPS coordinates were recorded. The team moved on

to Elizabeth (21361) site where two new battery boxes and cables were installed, and GPS coordinates were recorded. On 19 January, the team went to JC (21357) site. The site was anchored loosely, and the antenna was broken. They were unable to replace the antenna, so the entire site was removed. On to Erin (21363) site, the team recorded GPS coordinates. They installed 2 new battery boxes and cables, raised the lower delta T boom because the probe was covered with snow, and replaced the Bendix/Belfort aerovane. Finally, the team installed a new AWS (8936) at Noel/ITASE site. GPS coordinates were recorded.

Polar Plateau

Dr. John Cassano reinstalled the Clean Air AWS (8987) at the new site at South Pole station on 26 January.

Mizuho AWS unit (21359) was installed at Mizuho Station on 7 October by members of JARE.

Adelie Coast

Rob Flint met the USGS Polar Sea in Hobart for the trip along the Adelie Coast. On 18 December Rob Flint and Blake Moore went to Port Martin (8909). The solar panel had been smashed by an impact. Some of the connectors and the junction box were so corroded by salt that it was impossible to do any work. A return visit with better tools and equipment was made on 20 December. New batteries, solar panel and junction box were installed. Also on 18 December, Gerd Wendler and Drew Egressey went to Sutton (8939). The station was removed and returned to the ship.

On 19 December, Rob Flint and Rachel Smith went to Penguin Point. They replaced the batteries and tightened the guys. A visual inspection showed the station to be in good condition with no evidence of salt corrosion. On 20 December, Rob Flint and LCDR Jackson went to Cape Denison. The batteries were replaced, and no evidence of salt deposition was found on the station. Installation of Cape Webb was scrapped due to transportation problems.

Antarctic Peninsula

The British Antarctic Survey serviced several of the units on the Antarctic Peninsula. Limbert (8925) site had stopped transmitting. The batteries were charged, so the unit was moved to Rothera on 14 January for further testing. A fault was found on the CPU board, and the unit was replaced on 10 February. A new tower section was added, and the boom was replaced. Uranus Glacier (8920) was visited on 7 January. The tower was raised, three new guys and deadmen were placed, and two new batteries and the junction box were replaced. The unit was removed to Rothera on 19 January because the transmissions were garbled. The 50 MHz oscillator was retuned, and the unit replaced on 24 January.

AWS unit 8917 (Sky-Blu) was revisited on 8 and 9 February. The tower was raised by two sections. Larsen Ice (8926) site was also visited on 9 February. Two new batteries were added and the guys were tightened. On 11 February, Butler Island (8902) site was visited. The tower was raised and new battery boxes added. The wind propeller was loose, and there is evidence of salt corrosion at the site.

7. GLOBAL TELECOMMUNICATIONS SYSTEM

The data from 31 Antarctic AWS units were entered into the Global Telecommunications System (GTS) during 2000. The data are collected by Service ARGOS. As soon as the data are received, Service ARGOS processes them and sends them on to the National Weather Service which distributes the data to the GTS. The data headers are:

SMAA14 KARS YYGGgg SIAA14 KARS YYGGgg

SNAA14 KARS YYGGgg

where S indicates surface, M is main observations (at 00, 06, 12, and 18 UT), I is intermediate observations (at 03, 09, 15, and 21 UT), and N is any other time. AA14 is for Antarctica, and KARS stands for the Largo receiving center (backup is LFPW for the center in Toulouse, France). YY indicates the day in the month, GG is the hour, and gg is the minutes. Table 3.1 contains the WMO identification number used by the GTS grouped according to their purpose and proximity where possible.

The University of Wisconsin-Madison is responsible for obtaining WMO numbers for AWS sites and for providing Service ARGOS with calibration information for processing the data. The main reason for getting the AWS data into the GTS is to make sure that the data are available in near real time for all organizations operating in Antarctica.

8. DATA AVAILABILITY

The data from our Automatic Weather Stations are available by anonymous FTP. The IP address and domain name are 128.104.109.33 (ice.ssec.wisc.edu). The login is "anonymous" (do not use the quotation marks), and the password is your email address. Once you have logged in, change to the pub/aws subdirectory. A listing of our station locations, names, and ARGOS ID numbers is located in the file "biglist" in this subdirectory. It is meant to serve as a guide to our stations as their ID numbers sometimes change. A complete guide for navigating the site may be found in the file "readme.faq".

Our three-hourly interval data for Antarctica in ASCII text format are contained in the year subdirectories of pub/aws/antrdr. The data have been corrected, i.e. an effort has been made to remove the bad data points. These data take longer to process, so the data for recent months are not available in this format. Within each of the year subdirectories of pub/aws/antrdr, there are text files named "3hrlist??" (where ?? indicates the last two digits of the year). These files list what station's data are contained in which files. The files "readme.updates?" in pub/aws/antrdr contain information on updates and/or corrections to the data, and the file "readme.3format" contains file name construction information and format of the three-hourly data. The file "readme.mailinglist" contains information on joining a mailing list which distributes information on data updates and changes. To subscribe, send email to aws@ssec.wisc.edu requesting to be added to our mailing list.

The directory pub/aws/summary/monthly contains ASCII printable text files of the paper data summary sheets. The format of the files can be found in the file "readme.sum" while updates and corrections to the data are located in "readme.sumupdates". The data are located in year subdirectories of pub/summary/monthly.

For those users who need more current information, we have created 10 minute interval data in ASCII text format for each station. These data are located in year subdirectories of pub/aws/10min/rdr. The data have been calibrated for the individual station instruments, but no other corrections have been made. The data are generally available up to and including the last full month of this year. The year subdirectories also contain a text file named "namelist??" (where ?? indicates the last two digits of the year in question). These files list what station's data are contained in which files.

Several important readme files are located in pub/aws/10min/rdr. The file "readme.format" contains information on filename construction of the data, as well as well as file content and is a must for those unfamiliar with the data. The files "readme.updates?" contain important information on changes/additions to the data.

Our site is available 24 hours a day, 7 days a week. If you have questions or problems, send email to aws@ssec.wisc.edu. We can also be reached by phone at (608) 265-2209 or (608) 262-0436 or fax at (608)

262-5947.

By mail, please contact:

Linda M. Keller University of Wisconsin Department of Atmospheric and Oceanic Sciences 1225 W. Dayton St. Madison, WI 53706 USA

9. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation, Office of Polar Programs, Grant 9726040 under the management of Dr. Bernhard Lettau. Assistance from the following countries is gratefully acknowledged. Expeditions Polaires Francaises installs and maintains the AWS units from the Adelie Coast to Dome C II. The British Antarctic Survey maintains the AWS units on the east side of the Antarctic Peninsula and south of Adelaide Island. The Japanese Antarctic Research Expedition (JARE) installs and maintains the AWS units at Relay Station, Mizuho, and Dome Fuji.

Mary R. Albert U.S.A. CRREL 72 Lyme Road Hanover, NH 03755-1290

Dr. Sridhar Anandakrishnan The Pennsylvania State University Earth Systems Science Center 540 Deike Building University Park, PA 16802

Dr. Gail Ashley Rutgers University Dept. of Geological Sciences

Piscataway, NJ 08854

Prof. Roger Bales University of Arizona Dept. of Hydrology & Water Resources Tuscon, AZ 85721

Rabindra Basnyat General Post Office P.O. Box #6644 Kathmandu NEPAL Prof. Richard Alley The Pennsylvania State University Earth Systems Science Center 517 Deike Building University Park, PA 16802

Dr. Jean-Claude Andre Centre National de Recherches Meteorologiques 42 Avenue G. Coriolis F-31057 Toulouse Cedex FRANCE

Liana Bacigalupi Library ENEA Progetto Antartide Via Anguillarese, 301 00060 S. Maria di Galeria (Roma) ITALY

Dr. L.A. Barrie Atmospheric Environment Service 4905 Dufferin Street North York, Ontario M3H 5T4 CANADA

Rob Bauer NSIDC/CIRES University of Colorado Boulder, CO 80309-0449 Dr. I. Allison Antarctic CRC University of Tasmania Hobart, Tasmania 7001 AUSTRALIA

Stefania Argentini Consiglio Nazionale Delle Ricerche IFA/CNR Via G. Galilei, c.p. 27 00044 Frascati (Roma) ITALY

Dr. Karen S. Baker Scripps Institute of Oceanography UCSD - A - 018 La Jolla, CA 92093

Ian J. Barton CSIRO Marine Laboratories GPO Box 1538 Hobart, Tasmania 7001 AUSTRALIA

Ms. Judy Bausch Yerkes Observatory P.O. Box 258 Williams Bay, WI 53191

Dr. John Bengston NOAA/NMFS National Marine Mammal Lab. 7600 Sand Pt. Way N.E. Seattle, WA 98115-0070 Prof. Charles R. Bentley University of Wisconsin Geophys. & Polar Research Cen. 1215 W. Dayton St. Madison, WI 53706 Dr. Robert Bindshadler NASA Goddard Space Flight Center Code 971 Greenbelt, MD 20771 Prof. Krzystztof Birkenmajer, Chrm. Com. On Polar Res., Polish Academy of Sciences Dept. of Dynamic Geology Instit. of Geological Sciences ul. Senacka 1-3 31-002 Krakow POLAND

Dr. John Bolzan Ohio State University Byrd Polar Research Center 1090 Carmack Road Columbus, OH 43210-1002

John W. Briggs, Engineer Yerkes Observatory 373 West Geneva Street Williams Bay, WI 53191-0258

Giancarlo Caimi Via S. Benelli 8 20151 Milano ITALY

Captain, R/V Lawrence G. Gould c/o AGUNSA Deposito Franco Antarctico Av. Independencia 772 P.O. Box 60-D Punta Arenas CHILE

Prof. John Carroll University of California Dept. LAWR Davis, CA 95616 Dr. George Blaisdell National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Dr. Scott Borg National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Dr. David Bromwich Ohio State University Byrd Polar Research Center 1090 Carmack Road Columbus, OH 43210-1002

Michael Carmody Raytheon Polar Services 7400 South Tuscon Way Centennial, CO 80112-3938

Captain, R/V Nathaniel B. Palmer c/o AGUNSA Deposito Franco Antarctico Av. Independencia 772 P.O. Box 60-D Punta Arenas CHILE

I.F.S. Cavalacanti Depto Meteorologia, INPE Caixu Postal 515 12 200 Sao Jose dos Campos Sao Paulo BRAZIL Mr. Greg Bodeker University of Natal Space Physics Research Instit. King George V. Ave. Durban 4001 SOUTH AFRICA

Irina I. Borzenkova State Hydrological Institute 23 Second Line 199053, St. Petersburg RUSSIA

Neva Brown 30 Lantern Lane Wrentham, MA 02093

Prof. Azzio Caneva Universita di Genova Stazione Geofisica 12080 Roburent Cuneo ITALY

Dr. A.M. Carleton Dept. of Geography The Pennsylvania State University 0314 Walker Building University Park, PA 16802

Art Cayette SPAWAR System Center P.O. Box 190022 North Charleston, NC 29419-9022 Roberto Cervellati ENEA Pas Progetto Antarctide S.S. Anguillarese 301 Roma ITALY

Pecheng Chu Naval Postgrad. School, Code OC/CU Dept. of Oceanography Monterey, CA 93943 Prof. Chen Liqi, Director Chinese Antarctic Administration No. 1 Fuxingmenwai Street Beijing CHINA

Dr. Josefino C. Comiso NASA/Goddard Space Flight Center Code 971 Greenbelt, MD 20771

Dick Crouthamel National Weather Service Mail Code W/OM31 1325 E-W Highway Silver Spring, MD 20910 CRREL-TL Dept. of the Army Corps of Engineers Hanover, NH 03755-1290

Dr. TaeJin Choi

Incheon 406-840 KOREA

ul. Vavilova, 44

Moscow 117333 RUSSIA

Building 2

Korea Polar Research Institute, KORDI

The Committee on Antarctic Research

Songdo Techno Park, 7-50,

Songdo-dong, Yeonsu-gu,

W. Darnell NASA, Langley Research Center Mail Stop 185 Hampton, VA 23665-5225

Frederick E. Crory

US Army CRREL

Hanover, NH 03755-1290

72 Lyme Road

Dr. Thomas DeFelice University of Wisconsin Dept. of Geoscience, Lapham Hall P.O. Box 413 Milwaukee, WI 53201

Debra Diemand CRREL-TL Dept. of the Army Corps of Engineers Hanover, NH 03755-1290 Director Cold And Arid Regions Environ. and Engineering Res. Institute Academia Sinica Lanzhou 730000 CHINA

Mr. Michel Engler, Director Expeditions Polaires Francaises 47 Ave. du Marechal Fayolle 75116 Paris FRANCE Dr. Hiroyuki Enomoto Kitami Institute of Technology Koencho 165 Kitami, Hokkaido 090-8507 JAPAN Rear Ar. Fernando M. Diegues, Sec. Comm. Interministerial para os Recursos do Mar (CIRM) Ministerio da Marinha 40 ANDAR 70055 DF-Brasilia BRAZIL

Dr. David J. Drewry Vice-Chancellor University of Hull Cottingham Road Hull, Yorksire HU6 7RX UNITED KINGDOM

Dr. Karl Erb National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230 Jane Ferrigno USGS National Center Mail Stop 927 Reston, VA 22092 Michel Fily Lab. de Glaciologie et Geophys. de L'Environnement BP 96 38402 Saint-Martin-d'Heres FRANCE

Dr. R.J. Flint 185 Bear Gulch Road Woodside, CA 94062 Margaret Finger, Librarian University of Melbourne Dept. of Meteorology Parkville, Victoria 3052 AUSTRALIA

Dr. Benson Fogle 7 Park Overlook Court

Bethesda, MD 20817

Dr. Joan Fitzpatrick Federal Center U.S. Geological Survey-Denver P.O. Box 25046 Denver, CO 80225

Woodside, CA 94

Prof. Theodore D. Foster Scripps Institute of Oceanography Mail Code 0240 University of California, San Diego LaJolla, CA 92093-0240

Prof. H. Fukunishi Tohoku University Upper Atmos. & Space Research Laboratory Sendai 980-0845 JAPAN

Abbate Giulia ENEA Casaccia Italian Antarctic Project Via Anguillarese 301 00100 Roma ITALY

Robert Grumbine 5200 Auth Rd., Room 204 W/NMC21 Camp Springs, MD 20746 Andrew G. Fountain Dept. of Geology Portland State University P.O. Box 751 Portland, OR 97207-0751

Gen. Ricardo Galarza Uruguayan Antarctic Institute Buenos Aires 350 Montevideo URUGUAY

Hector R. Godoy Servicio Meteorologico National Depto Antarctico 25 de Mayo 658 Capital Federal REPUBLICA ARGENTINA

Anselm Haanen IEIS Prog. Consultant, c/-DSIR Antarctic Orchard Road Christchurch International Airport P.O. Box 14-091, Christchurch NEW ZEALAND E. Imre Friedmann Polar Desert Research Center Dept. of Biological Science (B-142) Florida State University Tallahassee, FL 32306-2043

Christophe Genthon Lab. de Glaciol. et Geophys. de l'Env. 54 Rue Moliere, DU BP 96 F-38402 Saint Martin d'Heres Cedex FRANCE

Goldthwait Polar Library Byrd Polar Research Center Ohio State University 1090 Carmack Road Columbus, OH 43210-1002

Ritva Hanninen, Librarian Finnish Meteorological Institute Box 503 SF-00101 Helsinki 10 FINLAND Inger Hanssen-Bauer Norwegian Meteorological Institute P.O. Box 43 - Blindem 0313 Oslo 3 NORWAY

G. Hernandez University of Washington Geophysics Program AK-50 Seattle, WA 98195

Hugh Hutchinson Bureau of Meteorology 20 Ellerslie Rd. Hobart, TAS 7000 AUSTRALIA

Martin Jeffries National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

P.D. Jones University of East Anglia Climate Research Unit Norwich NR4 7TJ UNITED KINGDOM

Stephen J. Katz Colorado School of Mines Arthur Lakes Library/Serials Golden, CO 80401 Ross Harp, Jr. P.O. Box 1717 Boulder, CO 80306

Dr. Roger Hewitt Southwest Fisheries Center Antarctic Ecosys. Research Gr. P.O. Box 271 La Jolla, CA 92038

T.H. Jacka Antarctic CRC Box 252C Hobart, Tasmania AUSTRALIA 7001

Dr. Ken Jezek Ohio State University Byrd Polar Research Center 1090 Carmack Road Columbus, OH 43210-1002

Dr. Takao Kameda Snow and Ice Research Laboratory Dept. of Civil & Environmental Engineering Kitami Institute of Technology 165, Koencho, Kitami, Hokkaido 090-8507 JAPAN

Chris Kidd School of Geography University of Birmingham Edgbaston, Birmingham B15 2TT UNITED KINGDOM Ralph Harvey Dept. Geological Sciences Case Western Reserve University 112 A.W. Smith 10900 Euclid Ave. Cleveland, OH 44106-7216

Dr. Austin Hogan P.O. Box 21 Piermont, NH 03779-0021

Dr. Stanley Jacobs Columbia University Lamont Observatory Palisades, NY 10964

Prof. Jia Pengqun Polar Met. Lab., Acad. of Met. Sci. State Meteorological Admin. Baishiqiaolu No. 46, West Suburb Beijing, 100081 CHINA

Prof. Anders Karlqvist, Director Royal Swedish Academy of Science Polar Research Secretariat Box 50005 10405 Stockholm SWEDEN

Dr. Tokio Kikuchi Kochi University Dept. of Physics, Faculty of Sci. 2-5-1, Akebono-cho Kochi 780-8072 JAPAN Dr. John C. King British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UNITED KINGDOM

Dr. K.Ya Kondratyev The Russian Acad. Inst. for Lake Res. Sevastyanov Str., 9 St. Petersburg, 196199 RUSSIA

Dr. Steve Kottmeier

Raytheon Polar Services

7400 South Tuscon Way

Centennial, CO 80112-3938

Akio Kitoh Meteorological Research Institute Climate Research Division Tsukuba, Ibaraki 305-0052 JAPAN

Dr. Els Kooij-Connally Library ECMWF Shinfield Park Reading, Berkshire RG2 9AX UNITED KINGDOM

Prof. Dr. H. Kraus Met. Institut der Universitat Bonn D-5300 Bonn 1 FRG Auf Dem Hugel 20 GERMANY

Dr. B.L. Krutskikh Arctic & Antarc. Research Institute St. Petersburg, 191104 RUSSIA Prof. M. Kuhn Universitat Innsbruck Institut fur Met. & Geophysik Innrain 52 A-6020 Innsbruck AUSTRIA Dr. Ron Kwok Senior Research Scientist Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr. Pasadena, CA 91109

Dr. Victor Lagun Air-Sea Interaction Dept. The Arctic & Antarc. Scientific Res. Instit. 38 Bering Street 199 397 St. Petersburg RUSSIAN FEDERATION

Anthony Lazzara P.O. Box 72 Morgan, VT 05853 Claude M. Laird University of Kansas 2291 Irving Hill Drive Campus West Lawrence, KS 66045

Brig. Gen. Jorge E. Leal Dir. Nacional del Antarctico Cerrito 1248 1010 Buenos Aires ARGENTINA Jouko Launiainen Finnish Instit. of Marine Research P.O. Box 33 00931 Helsinki FINLAND

Bang Yong Lee Korea Ocean Research & Dev. Instit. Polar Research Center Ansan P.O. Box 29 Seoul 425-600 SOUTH KOREA

Dr. Yuji Kodama Hokkaido University Institute of Low Temp. Science Sapporo 060-0819 JAPAN

Prof. Dr. Christopher Kottmeier Universitat Karlsruhe Institut fur Meteorologie und Klimaforschung Kaiserstr. 12 (Physikhochhaus) 76128 Karlsruhe GERMANY

Arlin Krueger NASA/Goddard Space Flight Center Code 616 Greenbelt, MD 20771 Denyse Lemaire-Ronveaux Dept. des Sci. de la terre et de l'environ. Faculte des Sciences CP 160 Ave F.D. Roosevelt, 50 1050 Brussels BELGIUM

Librarian British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UNITED KINGDOM

Library Climatic Research Unit University of East Anglia Norwich NR4 7TJ UNITED KINGDOM

Keith B. Mayer Library Geophysical Institute/IARC 903 Koyukuk Fairbanks, AK 99775

Dr. David Limbert 2 Topcliffe Way Cambridge, CB1 4SH UNITED KINGDOM Dr. Marc Lessard Thayer School of Engineering Dartmouth College 8000 Cummings Hanover, NH 03755-8000

Library Alfred Wegener Inst. fur Polar und Meeresforschung Forschungsstelle Potsdam Telegraphenberg A 43 14473 Potsdam GERMANY

Library Finnish Inst. of Marine Research Box 33 SF 00931 Helsinki FINLAND

Library National Inst. of Polar Research 9-10, Kaga 1-chome Itabashi-ku Tokyo 173-8515 JAPAN

Nancy Liston, Librarian U.S. Army CRREL Attn: Library 72 Lyme Road Hanover, NH 03755-1290

Dr. C. Lorius C.R.N.S., Lab. de Glaciol. et Geophys. de L'Environ. rue Moliere, BP 96 38 402 Saint Martin D'Heres Cedex FRANCE Dr. Douglas H. Lowenthal Desert Research Institute 2215 Raggio Parkway Reno, NV 89512-1095 Librarian Australian Antarctic Division Channel Highway Kingston, Tasmania 7050 AUSTRALIA

Library Antarctica New Zealand Private Bag 4745 Christchurch NEW ZEALAND

Library Instituto Antarctico Chileno Luis Thayer Ojeda 814 Casilla 16521 Correo 9 Santiago CHILE

Library Tasmania/Antarctica Reg. Office Bureau of Meteorology GPO Box 727G Hobart, Tasmania 7001 AUSTRALIA

Michael P. Lizotte 800 Algoma Blvd. Oshkosh, WI 54901

Daren Lu Institute of Atmospheric Physics CAS Beijing 100029 CHINA Dan Lubin National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Doug MacAyeal Dept. of Geophysical Sciences 5734 S. Ellis Ave. Chicago, IL 60637 Prof. Lu Longhua Polar Meteorology Research Lab. Acad. of Met. Sci., State Meteorological Admin. Baishiqiaolu #46, West Suburb Beijing CHINA 100081

Sammantha Magsino, SOAR Institute for Geophysics University of Texas at Austin 4412 Spicewood Springs Road Bldg. 600 Austin, TX 78759-8500

Dr. M.J. Manton Bureau of Meteorology Research Cen. GPO Box 1289K Melbourne, Victoria 3001 AUSTRALIA

Alberto Marenga Polar Documentation Centre P.O. Box 14302 00149 Roma, (Trullo) ITALY

Viktor L. Mazo Russian Academy of Sciences Institute of Geography 29 Staromonetny 119017 Moscow RUSSIA

Thomas K. Mefford NOAA/CMDL 325 Broadway R/CMDL1 Boulder, CO 80305 Dominique Marbouty European Cent. for Med Range Weather Forecasts Shinfield Park, Reading Berkshire RG2 9AX UNITED KINGDOM

Roberta Marinello National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230 Kirk A. Maasch Quaternary Institute University of Maine 5711 Boardman Hall Orono, ME 04469-5711

Dr. Pentti Malkki Finnish Instit. of Marine Research P.O. Box 33 SF-00931 Helsinki FINLAND

Cristine Coutinho Marcial Sec. Da Com. Intermin., Para Recursos do Mar. Min. da Marinha, SECIRM-40 ANDAR Cep: 70055-Brasilia-D.F. BRAZIL

Paul Mayewski Dept. of Geological Sciences University of Maine 5790 Bryand Global Sciences Center Orono, ME 04469-5790

Joe McConnell University of Arizona Dept. of Hydrology and Water Resources Tucson, AZ 85721 Christopher P. McKay NASA, Solar Systems Explor. Branch Ames Research Center Moffett Field, CA 94034

Meteorology Department Library The Pennsylvania State University 503 Walker Bldg. University Park, PA 16802 Meteorology Office McMurdo Station, Antarctica PSC 469 Box 700 APO AP 96599-5700 Tony Meunier USGS MS 515 Reston, VA 20192

Prof. Joseph M. Moran UW-Green Bay Dept. of Earth Science Green Bay, WI 54311

Robert Morse UW-Madison Dept. of Physics Room 3406 Sterling Hall 475 N. Charter Street Madison, WI 53706

Prof. Frank J. Murcray University of Denver Dept. of Physics Denver, CO 80208-0202 Dr. Peter Milne National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Dr. Richard E. Moritz University of Washington Polar Science Center 1013 N.E. 40th Street Seattle, WA 98015

Dr. Ellen Mosley-Thompson Ohio State University Byrd Polar Research Center 1090 Carmack Road Columbus, OH 43210-1002

John Nairn Bureau of Meteorology Antarctic Met. Center Project Development Center P.O. Box 1289K, Melbourne 3001 Victoria AUSTRALIA

National Center for Atmospheric Research NCAR Library - Serials P.O. Box 3000 Boulder, CO 80307 William Neff NOAA/ERL/WPL, R/E/WP7 325 Broadway Boulder, CO 80303 Al Mongeon National Weather Service WMO Representative W/OSO 242 1325 East West Highway Silver Spring, MD 20910

E.M. Morris British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UNITED KINGDOM

Mr. G.B. Mukherji, Director Dept. of Ocean Development Block 12 C.G.O. Complex Lodi Road New Delhi 110003 INDIA

M.R. Nayak National Institute of Oceanography Marine Instrumentation Div. N.I.O. Dona Paula Goa-403 004 INDIA

NOAA/MASC Library Acquisitions MC5 325 Broadway Boulder, CO 80303

NSF Representative McMurdo Station PSC 469 Box 700 APO AP 96599-5700 NSF Representative New Zealand PSC 467 Box 296 APO AP 96531-2000 Kathy Pagan NASA/AMES Mail Stop 245-5 Moffett Field, CA 94035 Dr. Julie Palais National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Dr. Andrea Pellegrini PAS/Progetto Antarctide ENEA-Casaccia C.P. 2400 00100 Roma A.D. ITALY

Michael Pook Antarctic CRC GPO Box 252-80 Hobart, Tasmania 7001 AUSTRALIA

Linda Preston, Librarian Federal Bldg.-Library Nat. Climatic Data Center/NOAA Asheville, NC 28801-2696

Margaret N. Rees University of Nevada Dept. of Geophysics Las Vegas, NV 89154

Dr. Carlos A. Rinaldi, Director Instituto Antarctico Cerrito 1248 1010 Buenos Aires ARGENTINA Prof. Thomas Parish University of Wyoming Dept. of Atmospheric Sciences P.O. Box 3038, Univ. Station Laramie, WY 82071

Dr. Polly Penhale National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Joseph Prejs 1501 S. Clifton Ave. Bloomington, IN 47401-6649

Rajmund Przybylak Nicholas Copernicus University Dept. of Climatology ul. Danielwskiego 6 87-100 Torun POLAND

Ms. Winifred Reuning National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Dr. Ted J. Rosenburg University of Maryland Inst. for Phys. Sci. & Tech. College Park, MD 20742 Dr. Byong Kwon Park, Director Korea Ocean Res. & Dev. Institute An San P.O. Box 29 Seoul 425-600 SOUTH KOREA

Polar Research Center Korean Ocean Research and Dev. Inst. Ansan P.O. Box 29 Seoul 425-600 SOUTH KOREA

Dr. Tony Press, Director Antarctic Division Channel Highway Kingston, Tasmania 7050 AUSTRALIA

Dominique Raynaud Laboratoire de Glaciol. et Geophys. de l'Environ. BP 96 38402 St. Martin d'Heres Cedex FRANCE

Dr. David Reusch Earth and Environmental Systems Institute 517 Deike Building Pennsylvania State University University Park, PA 16802

Dr. Thomas F. Ross NOAA/NCDC National Climatic Data Center Room 121 Federal Building Asheville, NC 28801-2696 Comodoro Enrique Saavedra Servicio Meteorologico Nacional 25 de Mayo 658 1002 Buenos Aires REPUBLICA ARGENTINA

Ted Scambos National Snow and Ice Data Center University of Colorado Campus Box 449 Boulder, CO 80309-0449 V.K. Saxena North Carolina State University Dept. of Marine, Earth & Atmos. Science Box 8208 Raleigh, NC 27695-8208

Greg Scharfen National Snow and Ice Data Center University of Colorado Campus Box 449 Boulder, CO 80309-0449

Thomas W. Schmidlin Kent State University Dept. of Geography Kent, OH 44242 Schwerdtfeger Library Space Science and Engineering Center 1225 W. Dayton St., Room-317 Madison, WI 53706 Science & Technology Corp. 101 Research Drive Hampton, VA 23666 ATTN: C.A. Keen

Akhil Saxena, Section Officer

Dept. of Ocean Development

Mahasagar Bhavan, Block-12

UCL-Institut d'Astron. et de Geophys.

CGO Complex, Lodi Road New Delhi 110003

Government of India

INDIA

Guy Schayes

BELGIUM

Chemin du Cyclotron 2

B-1348 Louvain-La-Neuve

Science Library Amundsen-Scott South Pole Station, Antarctica c/o Inland Stations Manager 7400 South Tuscon Way Centennial, CO 80112-3938 Science Library Crary Laboratory McMurdo Station, Antarctica c/o Laboratory Manager 61 Inverness Dr. East, Suite 300 Englewood, CO 80112

Science Library Palmer Station, Antarctica c/o Supervisor, Lab Operations 61 Inverness Dr. East, Suite 300 Englewood, CO 80112

Service Central d'Explication Meteorologia Division Climatologie 2, Division Rapp 75340 Paris Cedex 07 FRANCE Dr. Alberto Setzer Instituto de Pesquisas Espaciais Dept. de Meteorologia e Oceanografia Caixa Postal 515 12201-Sao Jose dos Campos-SP BRAZIL Jonathan Shanklin British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UNITED KINGDOM

Dr. Hayley Shen Dept. of Civil and Environmental Engineering Clarkson University Potsdam, NY 13699-5710 Dr. Madan L. Shrestha, Dir. General Dept. of Hydrology & Meteorology P.O. Box No. 406 Babarmahal, Kathmandu NEPAL Dr. Christopher A. Shuman NASA/GFSC Code 971 Greenbelt, MD 20771 August L. Shumbera Federal Building National Climatic Data Center Asheville, NC 28801 Prof. Ian Simmonds School of Earth Sciences University of Melbourne Parkville, Victoria AUSTRALIA 3052 Prof. Raymond Smith University of CA-Santa Barbara Computer Systems Laboratory Santa Barbara, CA 93106

Dr. Roland Souchez

Faculte des Sciences

1050 Brussels BELGIUM

Dr. Philip M. Solomon SUNY Stoneybrook Dept. of Physics Stoneybrook, NY 11794

South Pole Station

PSC 468 Box 400

APO AP 96598-5400

Dr. Susan Solomon NOAA DSRC 325 Broadway Boulder, CO 80305

Todd Sowers University of Rhode Island URI/GSO S. Ferry Road Narragansett, RI 02882-1197

Station Manager Palmer Station, Antarctica c/o AGUNSA Deposito Franco Antarctico Av. Independencia 772, P.O. Box 60-D Punta Arenas CHILE

Dr. N.A. Streten Bureau of Meteorology Box 1289 K, Melbourne 3000 Victoria AUSTRALIA

Swedish Polar Research Secretariat, Library Box 50005 S10405 Stockholm SWEDEN Mr. Brian Stone National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Dr. A.P. Sturman University of Canterbury Dept. of Geography Christchurch 1 NEW ZEALAND

Dr. Charles Swithinbank Home End Fulbourn Cambridge CB1 5BS UNITED KINGDOM Towanda Street National Ice Center FOB#4, Room 2301 4251 Suitland Rd. Washington, DC 20395

Mike Scheuermann National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

Prof. Masaki Takematsu Kyushu University Res. Inst. for Applied Mechanics Kasuga 816 JAPAN

Sharon Stammerjohn Institute for Computational Earth System Science UCSD Sanata Barbara, CA 93106-3060

Dept. des Sci. de la terre et de l'environ.

CP 160 Ave. F.D. Roosevelt, 50

47

Tasmanian/Antarctic Reg. Office Bureau of Meteorology Hobart AUSTRALIA

7600 Sand Point Way NE Bldg. 3

Dr. Kendall Taylor Desert Research Institute P.O. Box 60220 5625 Fox Ave. Reno, NV 89506-0220

Geza T. Thuronyi Library of Congress Science & Technology Division Washington, D.C. 20540

John Turner British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UNITED KINGDOM

Rodolfo del Valle Instituto Antarctico Argentino Cerrito 1248-1010 Buenos Aires ARGENTINA

Michael Van Woert National Science Foundation Office of Polar Programs Room 755 4201 Wilson Blvd. Arlington, VA 22230

John E. Walsh University of Illinois Dept. of Atmospheric Sciences 1101 W. Springfield Ave. Urbana, IL 61801 Dr. Calvin Teague Center for Radar Astronomy Dept. of Electrical Engineering Stanford University Stanford, CA 94305

Dr. Brian A. Tinsley, MSF022 University of Texas-Dallas Box 830688 Richardson, TX 75083-0688

Dr. Rein Vaikmae Estonian Academy of Science Institute of Geology 7 Estonia Puiestee 200101 Tallinn ESTONIA

Michiel van den Broeke IMAU P.O. Box 80005 3508 TA Utrecht THE NETHERLANDS

E.D. Waddington University of Washington Geophysics AK-50 Seattle, WA 98195-1650

Stephen G. Warren University of Washington Dept. of Atmospheric Sciences AK-40 Seattle, WA 98195

Dr. Adrian Tuck R/E/ALG NOAA/Aeronomy Lab 325 Broadway Boulder, CO 80303

Martha B. Thayer

Seattle, WA 98115

NOAA Library

Bin C-15700

Luca Valenziano CNR-TESRE via P. Gobetti 101 I-40129 Bologna ITALY

Dr. Harry van Loon NCAR P.O. Box 3000 Boulder, CO 80307

Von Walden Dept. of Geography University of Idaho McClure Building, Room 203 Moscow, ID 83844-3021 Dr. Gunter Weller University of Alaska Geophysical Institute 903 Koyukuk Ave. Fairbanks, AK 99701

Dr. Anthony Worby GPO Box 252-80 Hobart, Tasmania 7001 AUSTRALIA Dr. Gerd Wendler University of Alaska P.O. Box 757320 Fairbanks, AK 99775-7320

World Data Center-A Glaciology (Snow and Ice) CIRES/University of Colorado Boulder, CO 80309 World Data Center-A Marine Geology & Geophysics NOAA, E/GC3 325 Broadway Boulder, CO 80303

Nicholas Copernicus University

Inst. Of Geography, Dept. of Climatology

Prof. G. Wojcik

POLAND

ul. Danielewskiego 6 87-100 Torun

World Data Center-A: Meteorology NOAA, E/CC Federal Building Asheville, NC 28801 World Data Center-A: Oceanography NOAA, E/OC53 Silver Spring, MD 20910-3282 Steven Worley (2) NCAR/SCD P.O. Box 3000 Boulder, CO 80307

Mrs. Xu Pei-Min Polar Information Data Center Polar Res. Institute of China Jinqiao Road, Pudong 451 Shanghai 200129 CHINA Dr.Takashi Yamanouchi National Instit. of Polar Research 1-9-10 Kaga, Itabashi-ku Tokyo, 173-8515 JAPAN Hengchun Ye California State University, Los Angeles Dept. of Geography and Urban Analysis Los Angeles, CA 90032-8222

Zhang Yinsheng Cold And Arid Regions Environ. and Engineering Res. Institute Academia Sinica Lanzhou 730000 CHINA Dr. I.A. Zotikov Russian Academy of Sciences Institute of Geography 29 Staromonetny Moscow, 119017 RUSSIA Dr. Mario Zucchelli, Manager Antarctic Project, ENEA PAS C.R.E. CASACCIA P.O. Box 2400 Via Anguillarese, 301 00100 Roma A.D. ITALY

Dr. H.J. Zwally NASA/Goddard Space Flight Center Code 971 Greenbelt, MD 20771