We are working to migrate this publications database, and the current listing does not reflect the most recent publications available. Thank you for your patience, and please reach out to library@ssec.wisc.edu with any questions.


Download Rich Text Format
Results: Found 8662 records (displaying records 3251 through 3275)

3251. Kabat, Brian; Velden, C. S. and Brueske, K. F.. Tropical cyclone intensity estimation using the NOAA-LKM Advanced Microwave Sounding Unit (AMSU): Part II: A multi-channel approach. Boston, MA, American Meteorological Society, 2002, Paper 12A.6. Reprint # 3857. 

3252. Kabatas, B.; Menzel, W. P.; Bilgili, A. and Gumley, L. E.. Comparing ship track droplet sizes inferred from Terra and Aqua MODIS data. Munich, Germany, European Geophysical Union, 2012, Abstract 12064-1. 
Abstract Document Link to Abstract

3253. Kabatas, B.; Pierce, R.B.; Unal, A.; Rogal, M.J. and Lenzen, A. . April 2008 Saharan dust event: its contribution to PM10 concentrations over the Anatolian Peninsula and relation with synoptic conditionsScience of the Total Environment, Volume: 633, 2018, pp.317-328. Reprint # 8308. 
PDF Document Link to PDF

3254. Kabatas, B.; Unal, A.; Pierce, R. B.; Kindap, T. and Pozzoli, L.. The contribution of Saharan dust in PM10 concentration levels in Anatolian Peninsula of TurkeyScience of the Total Environment, Volume: 488, Issue: 1, 2015, pp.413-421. Reprint # 7439. 
PDF Document Link to PDF

3255. Kabatas, Burcu; Menzel, W. Paul; Bilgili, Ata and Gumley, Liam E.. Comparing ship-track droplet sizes inferred from Terra and Aqua MODIS dataJournal of Applied Meteorology and Climatology, Volume: 52, Issue: 1, 2013, pp.230-241. Reprint # 6930. 
PDF Document Link to PDF

3256. Kabatas, Burcu; Unal, Alper; Pierce, R. Bradley; Rogal, Marek; Schaack, Todd and Lenzen, Allen. Dust influences in the Eastern Mediterranean: Multi-scale assimilation of MODIS AOD. Washington, DC, American Geophysical Union, 2016, Abstract A31E-0096. 

3257. Kahn, B. H.; Chahine, M. T.; Stephens, G. L.; Mace, G. G.; Marchard, R. T.; Wang, Z.; Barner, C. D.; Eldering, A.; Holz, R. E.; Kuehn, R. E. and Vane, D. G.. Cloud type comparison of AIRS, CloudSat, and CALIPSO cloud height and amountAtmospheric Chemistry and Physics, Volume: 8, Issue: 5, 2008, pp.1231-1248. Reprint # 5879. 
PDF Document Link to PDF

3258. Kahn, Brian H.; Drouin, Brian J. and L'Ecuyer, Tristan S.. Assessment of sampling sufficiency for low-cost satellite missions: application to PREFIREJournal of Atmospheric and Oceanic Technology, Volume: 37, Issue: 12, 2020, pp.2283-2298. Reprint # 8656. 
PDF Document Link to PDF

3259. Kahn, Brian H.; Nasiri, Shaima L.; Schreier, Mathias M. and Baum, Bryan A.. Impacts of subpixel cloud heterogeneity on infrared thermodynamic phase assessmentJournal of Geophysical Research-Atmospheres, Volume: 116, 2011, doi:10.1029/2011JD015774. Reprint # 6546. 

3260. Kahn, Doug T.; Rudlosky, S. D.; Meyers, P. C. and Pavolonis, M. J.. Evaluating the ProbSevere model over the Atlantic Ocean using WDSS-II. Boston, MA, American Meteorological Society, 2017, Abstract 880. 

3261. Kain, John S.; Dembek, S. R.; Rabin, R. M.; Weiss, S. J. and Marsh, P. T.. A realtime high-resolution forecast model for research and operations. Boston, MA, American Meteorological Society, 2012, Abstract 11A.4. 

3262. Kaku, K. C.; Reid, J. S.; Hand, J. L.; Edgerton, E. S.; Holben, B. N.; Zhang, J. and Holz, R. E.. Assessing the challenges of surface-level aerosol mass estimates from remote sensing during the SEAC(4)RS and SEARCH campaigns: baseline surface observations and remote sensing in the Southeastern United StatesJournal of Geophysical Research-Atmospheres, Volume: 123, Issue: 14, 2018, pp.7530-7562. Reprint # 8349. 
PDF Document Link to PDF

3263. Kaldunski, Ben; Pierce, Brad and Holloway, Tracey. When stratospheric ozone hits ground-level regulation: Exceptional events in WyomingBulletin of the American Meteorological Society, Volume: 98, Issue: 5, 2017, pp.889-892. Reprint # 7940. 
PDF Document Link to PDF

3264. Kalluri, Satya; Daniels, J.; Goodman, S. J.; Heidinger, A. and Lindsey, D.. Pathways towards data exploitation and new product development from GOES-R. Boston, MA, American Meteorological Society, 2016, Abstract 723. 

3265. Kalnajs, Lars E.; Avallone, Linnea M.; Seefeldt, Mark W. and Lazzara, Matthew A.. Augmenting the Ross Island-area automatic weather station network to develop a tropospheric ozone climatology: Collaborative research. Report to the Office of Polar Programs, National Science Foundation. AWS-Ozone 1st annual project report: NSF-OPP Gr. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center and Department of Atmospheric and Oceanic Sciences, 2012. Call Number: UW SSEC Publication No.12.05.K1. 
PDF Document Link to PDF

3266. Kalnajs, Lars E.; Seefeldt, M. W. and Lazzara, M. A.. Observations of Antarctic tropospheric ozone depletion events from an autonomous ozone sensor network. Boston, MA, American Meteorological Society, 2013, Abstract 3.4. 

3267. Kalnajs, Lars E.; Seefeldt, Mark W. and Lazzara, Matthew A.. Augmenting the Ross Island-area automatic weather station network to develop a tropospheric ozone climatology: Collaborative research. Report to the Office of Polar Programs, National Science Foundation. AWS-Ozone 2nd annual project report: NSF-OPP Gr. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center and Department of Atmospheric and Oceanic Sciences, 2013. Call Number: UW SSEC Publication No.13.05.K1. 
PDF Document Link to PDF

3268. Kaplan, J.; Rozoff, C. M.; Sampson, C. R.; Kossin, J. P.; Velden, C. and Demaria, M.. Improvements to the SHIPS Rapid Intensification Index (RII). Washington, DC, US Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), Office of the Federal Coordinator for Meteorology, 2012, PowerPoint presentation. 

3269. Kaplan, John; Rozoff, C. M.; Sampson, C. R.; Koss, J. P.; Velden, C. S.; DeMaria, M. and Knaff, J. A.. Assessing the predictability of tropical cyclone rapid intensification as a function of forecast lead-time using the SHIPS Rapid Intensification Index. Boston, MA, American Meteorological Society, 2012, Abstract 8B.8. 

3270. Kaplan, John; Rozoff, C. M.; Sampson, C. R.; Kossin, J. P.; Velden, C. S. and DeMaria, M.. Enhancements to the SHIPS Rapid Intensification Index. Boston, MA, American Meteorological Society, 2014, Abstract 110. 

3271. Kaplan, John; Rozoff, Christopher M. and DeMaria, Mark. Investigating the utility of multi-lead-time probabilistic rapid intensification models. Silver Spring, MD, National Oceanic and Atmospheric Administration (NOAA), Office of the Federal Coordinator for Meteorology (OFCM), 2017, Abstract 6.2; PowerPoint presentation. 
Abstract Document Link to Abstract

3272. Kaplan, John; Rozoff, Christopher M.; DeMaria, Mark; Sampson, Charles R.; Kossin, James P.; Velden, Christopher S.; Cione, Joseph J.; Dunion, Jason P.; Knaff, John A.; Zhang, Jun A.; Dostalek, John F.; Hawkins, Jeffrey D.; Lee, Thomas F. and Solbrig, Jeremy E.. Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical modelsWeather and Forecasting, Volume: 30, Issue: 5, 2015. Reprint # 7497. 
PDF Document Link to PDF

3273. Kaplan, John; Rozoff, Christopher M.; Sampson, Charles R.; Kossin, James P.; Velden, Christopher S. and DeMaria, Mark. Multi lead-time statistical rapid intensification guidance. Washington, DC, US Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), Office of the Federal Coordinator for Meteorology, 2013, abstract. 

3274. Kaplan, John; Rozoff, Christopher M.; Sampson, Charles R.; Kossin, James P.; Velden, Christopher S.; DeMaria, Mark and Leighton, Paul. Improvements to the SHIPS rapid intensification index: A year-2 JHT mid-term report. 1 September 2012-5 April 2013. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, 2013. Call Number: UW SSEC Publication No.13.04.K1. 
PDF Document Link to PDF

3275. Kaplan, John; Rozoff, Christopher R. and DeMaria, Mark. Investigating the utility of multi-lead-time probabilistic rapid intensification models. Washington, DC, US Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), Office of the Federal Coordinator for Meteorology, 2017, abstract.