We are working to migrate this publications database, and the current listing does not reflect the most recent publications available. Thank you for your patience, and please reach out to library@ssec.wisc.edu with any questions.


Download Rich Text Format
Results: Found 539 records (displaying records 126 through 150)

126. Garand, Louis and Weinman, James A.. A structural-stochastic model for the analysis and synthesis of cloud imagesJournal of Climate and Applied Meteorology, Volume: 25, Issue: 7, 1986, pp.1052-1068. Reprint # 721. 
PDF Document Link to PDF

127. Garcia, Raymond K.; Flynn, Bruce M.; Knuteson, Robert O.; Whittaker, Thomas; Rink, Thomas; Achtor, Thomas; Mindock, Scott; Dutcher, Steven T.; Snuga-Otto, Maciaj J. and Martin, Graeme D.. Tools for integrating distributed computing with interactive visualization in McIDAS-V. Boston, MA, American Meteorological Society, 2008, Paper 6A.8. Reprint # 5647. 

128. Garms, Elise M.; Borbas, Eva; Knuteson, Robert; Menzel, Paul; Plokhenko, Youri; Revercomb, Henry and Tobin, David. Validation of a 3-D cloud product (UW-CAVP) derived from NASA Atmospheric Infrared Sounder (AIRS) radiances with MODIS, CALIPSO, and COSMIC GPS satellite data using McIDAS-V version 1.0. Boston, MA, American Meteorological Society (AMS), 2011, Paper 8. Reprint # 8058. 

129. Gautier, Catherine; Diak, G. and Masse, S.. An investigation of the effects of spatially averaging satellite brightness measurements on the calculation of insolationJournal of Climate and Applied Meteorology, Volume: 23, Issue: 9, 1984, pp.1380-1386. Reprint # 610. 
PDF Document Link to PDF

130. Gehrels, T.; Suomi, V. E. and Krauss, R. J.. The capabilities of the spin-scan imaging technique. Berlin, Akademie-Verlag, 1972, pp.1765-1769. Reprint # 452. 

131. Goodman, Brian M.; Diak, G. R. and Mills, G. A.. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information. Boston, MA, American Meteorological Society, 1986, pp.142-145. Reprint # 711. 

132. Goodman, H. Michael; Auvine, Brian and Santek, David. The relationship of satellite and radar storm signatures to the subsynoptic wind field. Boston, MA, American Meteorological Society, 1982, pp.217-220. Reprint # 309. 

133. Goodman, H. Michael; Chase, Robert; Dodge, James; Spencer, Roy; Star, Jeffrey; Wilson, Gregory and Young, J. T.. WetNet: A NASA earth science and applications data system prototype for global moisture cycle studies. Boston, MA, American Meteorological Society, 1989, pp.395-396. Reprint # 1112. 

134. Gumley, Liam. NPP Atmospheric Product Evaluation and Test Element (PEATE) at SSEC. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, 2005, PowerPoint presentation. 
PDF Document Link to PDF

135. Gunshor, Mat; Schmit, Tim; Feltz, Joleen; Bah, Kaba and Whittaker, Tom. Using McIDAS to prepare users for the ABI. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, 2015, PowerPoint presentation. 
PDF Document Link to PDF

136. Haig, Thomas. The McIDAS system. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, 1977, pp.171-178. Call Number: UW SSEC Publication No.77.08.I1. 
PDF Document Link to PDF

137. Hallock, Kevin. Scripting McIDAS-X in a Python environment. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, 2013, PowerPoint presentation. 
PDF Document Link to PDF

138. Hayden, Christopher M. and Purser, James C.. Applications of a recursive filter, objective analysis in the processing and presentation of VAS data. Boston, MA, American Meteorological Society, 1986, pp.82-87. Reprint # 713. 

139. Hayden, Christopher M. and Purser, R. James. Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processingJournal of Applied Meteorology, Volume: 34, Issue: 1, 1995, pp.3-15. Reprint # 1829. 
PDF Document Link to PDF

140. Hayden, Christopher M. and Taylor, B. F.. The applications of AVHRR data to fine scale temperature and moisture retrievals obtained from NOAA satellites. Boston, MA, American Meteorological Society, 1985, J22-J28. Reprint # 673. 

141. Hayden, Christopher M.; Menzel, W. P. and Schreiner, A. J.. The clouds and VAS. Boston, MA, American Meteorological Society, 1984, pp.49-54. Reprint # 553. 

142. Hayden, Christopher M.; Smith, William L. and Woolf, Harold M.. Determination of moisture from NOAA polar orbiting satellite sounding radiancesJournal of Applied Meteorology, Volume: 20, Issue: 4, 1981, pp.450-466. Reprint # 189. 
PDF Document Link to PDF

143. Heikkinen, Stacey Michelle. The influence of variations in surface energy budget parameterizations on a subsynoptic scale model forecast. Madison, WI, University of Wisconsin-Madison, Department of Meteorology, 1985. Call Number: UW MET Publication No.85.00.H1. 

144. Heinzelman, Jay Scott. Lagrangian trajectory analysis of tropical circulations using VIS-5D. Madison, WI, University of Wisconsin-Madison, Department of Atmospheric and Oceanic Sciences, 1997. Call Number: UW MET Publication No.97.08.H1. 

145. Herman, Leroy D.. Some meteorological applications of AVHRR using McIDAS. Ann Arbor, MI, Environmental Research Institute of Michigan, 1987, p459. Reprint # 1945. 

146. Herman, Leroy D. and Smith, W. L.. Intercomparison of preliminary Earth Radiation Budget Satellite (ERBS) flux estimates and geostationary satellite multi-spectral 'VAS' radiance measurements. Boston, MA, American Meteorological Society, 1986, J34-J37. Reprint # 722. 

147. Hibbard, Bill. McIDAS-V: The long view. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, 2009, PowerPoint presentation. 
PDF Document Link to PDF

148. Hibbard, Bill and Dengel, G.. The GOES catalog on McIDAS. Boston, MA, American Meteorological Society, 1986, pp.98-100. Reprint # 676. 

149. Hibbard, Bill and Santek, Dave. The VIS-5D system for easy interactive visualization. Boston, MA, American Meteorological Society, 1991, pp.129-134. Reprint # 1167. 

150. Hibbard, Bill and Santek, David A.. Visualizing large data sets. Boston, MA, American Meteorological Society, 1989, pp.135-138. Reprint # 1053.