1. Li, Jun; Zheng, Jing; Li, Bo; Min, Min; Liu, Yanan; Liu, Chian-Yi; Li, Zhenglong; Menzel, W. Paul; Schmit, Timothy J.; Cintineo, John L.; Lindstrom, Scott; Bachmeier, Scott; Xue, Yunheng; Ma, Yayu; Di, Di and Lin, Han. Quantitative Applications of Weather Satellite Data for Nowcasting: Progress and Challenges. Journal of Meteorological Research, Volume 38, Issue 3, 2024, pp.399-413. Link to PDF |
2. Cintineo, John L.; Pavolonis, Michael J. and Sieglaff, Justin M. ProbSevere LightningCast: a deep-learning model for satellite-based lightning nowcasting. Weather and Forecasting, Volume 37, Issue 7, 2022, pp.1239-1257. Reprint # 8869. Link to PDF |
3. Gard, Thomas L.; Fuelberg, Henry E. and Cintineo, John L. The utility of ProbSevere v2.0 for predicting pulse severe thunderstorms. Weather and Forecasting, Volume 37, Issue 9, 2022, pp.1601-1613. Reprint # 8876. Link to PDF |
4. Cintineo, John L.; Pavolonis, Michael J.; Sieglaff, Justin M.; Cronce, Lee and Brunner, Jason. NOAA ProbSevere v2.0-ProbHail, ProbWind, and ProbTor. Weather and Forecasting, Volume 35, Issue 4, 2020, pp.1523-1543. Reprint # 8606. Link to PDF |
5. Cintineo, John L.; Pavolonis, Michael J.; Sieglaff, Justin M.; Wimmers, Anthony; Brunner, Jason and Bellon, Willard. A Deep-Learning Model for Automated Detection of Intense Midlatitude Convection Using Geostationary Satellite Images. Weather and Forecasting, Volume 35, Issue 6, 2020, 2567–2588. Reprint # 8653. Link to PDF |
6. Karstens, Christopher D.; Correia, James Jr.; LaDue, Daphne S.; Wolfe, Jonathan; Meyer, Tiffany C.; Harrison, David R.; Cintineo, John L.; Calhoun, Kristin M.; Smith, Travis M.; Gerard, Alan E. and Rothfusz, Lans P. Development of a human-machine mix for forecasting severe convective events. Weather and Forecasting, Volume 33, Issue 3, 2018, pp.715-737. Reprint # 8283. Link to PDF |
7. Pavolonis, Michael J.; Sieglaff, Justin and Cintineo, John. Automated detection explosive volcanic eruptions using satellite-derived cloud vertical growth rates. Earth and Space Science, Volume 5, Issue 12, 2018, pp.903-928. Reprint # 8356. Link to PDF |
8. Cintineo, John L.; Pavolonis, Michael J.; Sieglaff, Justin M.; Lindsey, Daniel T.; Cronce, Lee; Gerth, Jordan; Rodenkirch, Benjamin; Brunner, Jason and Gravelle, Chad. The NOAA/CIMSS ProbSevere Model: Incorporation of total lightning and validation. Weather and Forecasting, Volume 33, Issue 1, 2018, pp.331-345. Reprint # 8269. Link to PDF |
9. Pavolonis, Michael J.; Sieglaff, Justin and Cintineo, John. Spectrally Enhanced Cloud Objects - A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 2. Cloud object analysis and global application. Journal of Geophysical Research-Atmospheres, Volume 120, Issue 15, 2015, pp.7842-7870. Reprint # 7478. Link to PDF |
10. Pavolonis, Michael J.; Sieglaff, Justin and Cintineo, John. Spectrally Enhanced Cloud Objects - A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis. Journal of Geophysical Research-Atmospheres, Volume 120, Issue 15, 2015, pp.7813-7841. Reprint # 7477. Link to PDF |
11. Cintineo, John L.; Pavolonis, Michael J.; Sieglaff, Justin M. and Lindsey, Daniel T. An empirical model for assessing the severe weather potential of developing convection. Weather and Forecasting, Volume 29, Issue 3, 2014, 639–653. Reprint # 7227. Link to PDF |
12. Cintineo, John L.; Pavolonis, Michael J.; Sieglaff, Justin M. and Heidinger, Andrew K. Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. Journal of Applied Meteorology and Climatology, Volume 52, Issue 9, 2013, 2009–2023. Reprint # 7077. Link to PDF |
13. Schmit, Timothy J.; Goodman, Steven J.; Lindsey, Daniel T.; Rabin, Robert M.; Bedka, Kristopher M.; Gunshor, Mathew M.; Cintineo, John L.; Velden, Christopher S.; Bachmeier, A. Scott; Lindstrom, Scott S. and Schmidt, Christopher C. Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. Journal of Applied Remote Sensing, Volume 7, Issue 1, 2013, doi:10.1117/1.JRS.7.073462. Reprint # 7131. |