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1. Introduction

Within the framework of the EUMETSAT Satellite Application Facility to support
Nowcasting and very short range forecasting, SMHI is developing four cloud products from
AVHRR and AMSU data: Cloud Mask, Cloud Type, Cloud Top Temperature and Height and
Precipitating Cloud. The Precipitating Cloud (PC) product is described in this paper.

The requirements of a nowcasting precipitation product differ in some aspects from the
precipitation products in climate research. Whereas climate products need a high absolute
accuracy to detect climate signals, but employ temporal and spatial averaging, a nowcasting
product should employ the best possible spatial resolution. On the other hand the absolute
accuracy of precipitation amount is not of major importance. In our case we found the
definition of four intensity classes sufficient. The precipitation is specified as the likelihood of
precipitation in each intensity class. Another major requirement on a nowcasting product is
the timely generation for the region of interest.

2. Development Dataset

The algorithm development was performed using an eight month dataset (April 1999 to
November 1999) of NOAA-15 AMSU-A/B and AVHRR data. The data was co-located with
radar data from the BALTEX Radar Data Centre (BRDC) for the entire Baltic region covered
by 13 radars (Michelson et al, 2000). The precipitation amount of the radar data was gauge
adjusted using a technique described in (Michelson and Koistinen, 2000).

3. Algorithm

The algorithm is giving the likelihood of precipitation in four intensity intervals under the
constraint, that the total likelihood has to be 100%. Intensity classes are defined as follows:

Class 1: Precipitation-free rain rate 0.0 to 0.1 mm/h
Class 2: Risk for or very light precipitation rain rate 0.1 to 0.5 mm/h
Class 3: Light/moderate precipitation rain rate 0.5 to 5.0 mm/h
Class 4: Intensive precipitation rain rate greater 5.0 mm/h

Separate estimates of precipitation likelihood are performed from AMSU and AVHRR and
finally blended into a joint estimate.

3.1 AMSU

Most information of the precipitation product is derived from microwave frequencies. When
developing a precipitation algorithm for AMSU, we had to consider whether to concentrate on
an emission or scattering based algorithm. Whereas the emission signal from precipitation for
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frequencies below 50 GHz is more directly linked to precipitation, it can only be retrieved
over water surfaces, which give a radiatively cold background because of their low surface
emissivity. ‘For frequencies higher than 50 GHz it is possible to derive precipitation
algorithms based on the scattering signature of frozen precipitation sized particles over both
land and sea (Bennartz and Petty, 2000). Since it was desirable to also make use of MW data
over land, we developed a scattering based algorithm using AMSU-A and AMSU-B window
channels. This enabled us to also take advantage of the higher spatial resolution of AMSU-B
of 1.1° (corresponding to 16 km at nadir) as compared to AMSU-A with 3.3° resolution.

The scattering index makes use of a predicted brightness temperature T™ in the absence of
scattering, which is derived from low frequency channels. The functional relationship
between the low frequency brightness temperature and T" can either be found by inverse
radiative transfer modelling, or by global brightness temperature statistics. From T the high
frequency brightness temperature is subtracted:
SI = T'(Y;ow) - Thigh

with SI being the scattering index, Tiow, Thign being the observed low and high frequency
brightness temperature respectively. The scattering index has been found to be a linear
measure for precipitation intensity. In the algorithm described here, T is determined
statistically as:

T =T,,—CORR

where CORR includes a statistical correction for scan position effects and a statistical offset
for non-scattering situations. For algorithm development, it is necessary to take into account
the surface properties of the scene viewed. Scene specifications will influence the channel
selection and will also necessitate separate tuning of the correction coefficient. According to
the scene viewed, our algorithm specifies three separate cases for FOV’s covered with land or
water:

e AMSU-A land (and AMSU-B land): Sligna; = T23 — CORR - T150
e AMSU-A water or coast, AMSU-B Land: Sligna2 = T89 — CORR - T150
e AMSU-B water: Slea = T89 — CORR - T150

In the case of the water algorithm, the offset for non-scattering situations is adjusted
dynamically for each scene processed.

Coastal estimates have to be treated separately. A linear dependence exists between the MW
brightness temperatures and the land fraction within the FOV, as illustrated for the 23GHz
channel in figure 1. Thus the scattering index for coastal scenes can be estimated as a linear
combination of the land and sea scattering index, taking into account the land fraction within
the FOV:

Slcoasr = (1 - Nland ) * Slsea + Nland * Slland

with Njang being the land fraction and Sljang and Sl being the scattering indices for land and
sea respectively. Due to the high sensitivity of scene coverage within the FOV it is necessary
to properly convolve a high resolution land/sea mask to the AMSU FOV, as well as to
properly convolve AMSU-B to AMSU-A. We used a Backus-Gilbert convolution described
by Bennartz (2000) for this purpose.
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Figure 1: Dependence of AMSU-A brightness temperature at 23GHz on the fraction of land
surface within the footprint.

The scattering indices are matched with gauge corrected radar rain rates, which have been
convolved to the AMSU-B field of view. Frequency distributions of scattering indices have
been derived for each of the four precipitation classes defined above. For each scattering
index the probability that the observation falls within a certain precipitation class is
determined under the constraint that the total probability has to sum up to 100%. It could be
shown that the 23GHz-150GHz scattering index gives a better discrimination of precipitation
over land than the 23GHz-89GHz scattering index (figures 2 and 3). The probability
distribution of the scattering indices for the four precipitation classes is given in figure 3 for
land and in figure 4 for sea. Whereas it is possible to clearly discriminate non-precipitating
situations from strong precipitation, there is some overlap of the very light and the
light/moderate precipitation classes with both the high and non-precipitation classes. The two
intermediate classes overlap substantially with each other. In this light it seems even more
valid, to express the precipitation estimate as probabilities.
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Figure 2: Probability that the Scattering Index belongs to a certain precipitation class for the
23GHz-89GHz index over land. Peaking from left to right: no rain, very light rain, light to
moderate rain, heavy rain.
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Figure 3: Probability that the Scattering Index belongs to a certain precipitation class for the
23GHz-150GHz index over land. Peaking from left to right: no rain, very light rain, light to
moderate rain, heavy rain
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Figure 4: Probability that the Scattering Index belongs to a certain precipitation class for the
89GHz-150GH index over sea. Peaking from left to right: no rain, very light rain, light to
moderate rain, heavy rain
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3.2 AVHRR

At visible and infrared wavelengths, the coupling between spectral features and precipitation
is much weaker as in the microwave region. Using radar data, we investigated the statistical
coupling between spectral features in the AVHRR and precipitation. As expected, the 11um
brightness temperature proved to be the most important feature. At day time, some additional
information, specially with regard to intensity, can be derived from the reflectivity quota
RO.6p m/R3.7u m. This feature is strongly influenced by micro-physical features at the cloud
top, such as particle phase and size. The channel 3.7um reflectivity is derived using the
11 um channel to correct for the thermal contribution. We constructed a day time
Precipitation Index (PI) of the form:

PI, =a*T

'y —b*T11+c*In(RO.6/ R3.7)

day —

with a,b and ¢ being tunable coefficients, Ty, being the NWP surface temperature. At night
time we add some correction for semi-transparency derived from the brightness temperature
difference of AVHRR channels four and five to the llp m brightness temperature
information:

Pl . =a*T

surf

=b*T11-c*In(T11-T12)

night

When looking at the normalised frequency distribution of the PI for different precipitation
intensity classes, it becomes obvious that there is a substantial overlap of all precipitating
classes with the no-precipitation class (figure 5, lower). Except for strong convection, there
seems to be no potential to derive intensity information. When deriving the probabilities that a
given PI belongs to a certain precipitation class, the resulting distribution suffers from the fact
that there is a wide overlap between the precipitating and non-precipitating classes, as well as
from the generally much larger number of non-precipitating cases (see figure 5, upper).
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Figure 5: AVHRR day time algorithm. Lower panel: normalized histogram for different
precipitation classes (solid line: no precipitation, dotted: light precipitaion, dashed: light to
moderate precipitation, dash-dot: heavy precipitation). Upper pannel: same as below, but for
probability.



4. Combining AMSU and AVHRR

When comparing the separate performances of the AMSU and AVHRR algorithms, the most
important features can be summerized as follows:

AVHRR AMSU
# high spectral resolution [ low spectral resolution
# convective cells, even small ones, can be [J small convective cells sometimes missed

well defined (but might exhibit small
likelihood for precipitation in early stages)

U no strong coupling between spectral + stronger coupling between rain and
signature and rain scattering signature
L] Area of potential rain overestimated ¥ rain areas better delineated

c>generally low likelihood for rain

[ Intensity and likelihood not really # more independent intensity and likelihood
decoupled information

0 sometimes spurious light rain
0 not applicable over snow and ice

When comparing the algorithm performances, it becomes clear that the AMSU algorithm is
clearly superior to the AVHRR algorithm. When looking for a way to combine both
algorithms in a useful way we decided to mainly use the AVHRR to quality control the
AMSU in a way to only allow AMSU precipitation where suitable clouds are detected in the
VIS/IR, and thus get rid of some spurious light rain, which is sometimes given by the AMSU
algorithm. The combined AMSU/AVHRR product provides output for predefined areas in
polarstereographic projection. Processing is performed as follows:

* Run cloud mask and cloud type analysis (Dybbroe et al., 2000)

e For AVHRR pixels containing a potentially raining cloud type, compute precipitation
likelihood from AVHRR, otherwise set likelihood of no precipitation to 100%.

e If the precipitation likelihood from AVHRR is greater than 5%, check whether a valid
AMSU estimate is available for this point. If this is the case, substitute the AVHRR
estimate with the AMSU estimate.

A valid AMSU estimate means that AMSU data is available and of good quality. It also
means that no sea ice or snow is present in NWP fields, and no sea ice has been detected
using the algorithm of Grody et al. (2000). Thresholding the precipitation with a 5%
likelihood from the AVHRR algorithm has the effect that about 5% to 6% of the rain
according to radar data is missed.

Three examples of the Precipitating Cloud product are given in Figures 6.
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Figure 6: three examples of the AVHRR/AMSU precipitating cloud product over southern
Sweden. Left: PC product displayed as an RGB of likelihood in different intensity classes. Red
is assigned to very light precipitation, green to light to moderate, and blue to intense
precipitation. Middle: RGB of AVHRR channels 3,4,5. Verifying Radar composite. Green
signifies light to moderate precipitation, yellow moderate to heavy precipitation and read
heavy precipitation.

5. Summary and Conclusions

We have developed an empirical approach to detect precipitation and classify its intensity for
nowcasting applications. The user is provided with the likelihood of four different classes of
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precipitation intensity. Most information is derived from the scattering signature of AMSU-B
window channels. A special feature of the algorithm is that it works seamlessly not only over
land and sea, but even over coastal areas. The 150GHz channel has shown to give more detail
than the 89GHz channel, especially over land. AVHRR data is mainly used to quality control
the AMSU data, but also provides estimates were no AMSU data is available. The algorithm
was developed using a radar data set over the Baltic area. When the algorithm should be
transferred to very different climatic regions, a retuning should be performed.
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