

Characteristics of the Cloudy Atmosphere Observed by AIRS

Evan Fishbein Luke Chen Sung-Yung Lee JPL

Procedure

- Overview of AIRS Products Global Performance
- Use exemplar footprints to characterize dependence of product on cloudiness – 3 examples
 - Cloud-free
 - Low stratocumulus
 - Tropical cumulus convection
- Types of analyses consistency between radiances
 - Observed (Obs)
 - Cloud-cleared (CC)
 - Calculated from ECMWF forecast (Calc _{ECMWF})
 - Calculated from retrieved solutions (Calc_{AIRS})
- Consistency of CC water vapor radiances and dynamics

Overview

• 2002 September 9 (AIRS Focus Day 3)

 Successful MW retrievals: 	94%	
 Successful MW & cloud clearing: 	93%	
 Full MW/IR Retrievals: 	67%	
- Clear Retrieved Footprints (AIRS, AMSU)	:	
• NaF < 0.5:		0.2%
• Surface Channel Cloud Contamination < 0.1K: $\sum f_i \left\{ T_b^{\text{Surf}} - T_{bi}^{\text{Cloud}} \right\}$	11%	5.0%
 Total Cloudiness < 1%: 	10%	3.8%

•

Comparison between

AIRS retrievals and

interpolated ECMWF

RMS difference is an

forecast and retrieved

estimate of sum of

Temperature Profile Characteristics

Layer Average Temperature Bias (K) -1 10 Pressure (hPa) 100 **errors** (assumed uncorrelated) 1000 0.5 1.5 2.0 2.5 3.0 1.0 0 Layer Average RMS Temperature Difference (K)

Theoretical Basis for Cloud-Clearing

- Assumptions
 - Clouds are gray absorbers
 - Most parameters are homogeneous (independent of horizontal coordinates) within an AMSU footprint
 - Surface properties: emissivity, reflectivity, skin temperature
 - Profiles: temperature, water vapor, trace gases
 - Cloud properties: cloud top pressure, emissivity and reflectivity
 - Clouds are localized, i.e. cloud cover varies between AIRS footprints.

- Prediction of sea surface temperature
 - 21 LW channels (800 1000 cm⁻¹) SST
 - Cloud contamination characterized by departure from correlative SST
 - 0.8K precision
- Radiance coherency between adjacent footprint
 - Standard deviation of predicted SST in 3x3 AIRS footprints
 - 0.2K precision
- Noise amplification by cloud clearing

3 Study Footprints Presented

- 26/10/39
 - Low LW incoherency
 - Low SST discrepancy
 - Identified cloudy by retrieval
 - Thin cirrus
- 68/12/66
 - High LW incoherency
 - Identified clear by retrieval
 - Low stratocumulus
- 27/46/53
 - Moderate LW incoherency
 - Identified cloudy by retrieval
 - Tropical mesoscale cumulus systems

Cloud-Free Region (1)

- 6 September 2003
- G/S/F: 26/10/39 (Granule/Scanline/Footprint)
- Noise Amplification Factor (NaF) 1.28
- LW Coherency: 0.05K
- LW SST Pred Err: 0.26K

Cloud Signatures

Surface Channels show droop indicative of cirrus

CC – Obs do not show removal of cirrus signature

CC are cooler than observed in window channels.

CC and ECMWF-calculated are within 0.4K in these surface channels

Cloud-Cleared – Obs

Map radiances onto pressure using P centroid of weighting functions. Smoothed differences shown by line (method is dubious near surface)

Cloud-Cleared – Calc (AIRS)

 CC Radiances calculated from retrieved state, Retrieval Type 0 D/G/S/F/T/V: 2002-09-06 026 010 39 Focus3a v3.1.9.0 CC - Calc(AIRS)

Summary for Example 1

- Retrieval is detecting false cloud
 - Primitive cloud spectral model does not fit spectral shape of clouds
- Cloud-cleared radiances calculated from solution
 - Poor in stratosphere and lower troposphere
 - Error propagates upward and downward through profile

Cloudy Region Flagged Clear (2)

Retrieval Set contains both G/S/F: 68/12/66 and 68/10/65 (Night)

ITOVS-13 2003 November 03 Channel: 232 Freq: 715.94

Consistency of Cloud-cleared and Calculated Radiances

Freq=715.94 cm⁻¹ (Ch 232) 20020906 G-68 CC - Calc(AIRS)

Cloud Signatures

Difference with ECMWF shows spectra signature of water clouds Observed and Cloud-cleared radiances are the same

²⁰⁰³ November 03

Summary of Example 2

- Low Stratocumulus not detected
 Signature of liquid water clouds
- Fit to radiances within 1K in 1 km layers
 Differences are correlated with height
- Radiances contain information not used by retrieval

Tropical Cumulus

- Tropical Western Pacific
- GSF: 27/46/53
- 12.26 ° N, 161.7° E
- NaF: 3.1
- Mesoscale Convective Systems

Cloud-cleared

Cloud-cleared – Calc (ECMWF)

D/G/S/F/T/V: 2002-09-06 027 046 53 Focus3a v3.1.9.0 CC - Calc(ECMWF)

Spatial Variability of Temperature and Water Vapor

Spatial Variability Accuracy of Cloud Clearing Freq=715.94 cm¹(Ch 232) 20020906 G-27

Water Vapor Spatial Variability

- Water vapor CC radiance shows greater variability then temperature
- Increases mixing ratio uplifts the 0.01 column water vapor surface,
 - 1557 cm⁻¹ radiances is cooler
- Variability is correlated with clouds, but
- Radiance is consistent with:
 - vertical transport in squall
 - subsidence forward of squall

Conclusions

- Algorithms have difficulty detecting low clouds (previously known)
- Calculated radiances from solution do not agree with cloud-cleared radiances when low clouds are present
 - Implies more information can be extracted from measurement
- Algorithms appeared to be optimized for high clouds, e.g. tropical cumulus
- Mid through upper tropospheric cloud-cleared water vapor radiances show variability consistent with dynamics
- Studies of individual footprints elucidate algorithmic improvements and limitation

Cloud–Clearing Procedure

 Predict clear radiances from microwave radiances

 $R_{\text{iwave}} \rightarrow T, q \rightarrow R_{\text{IR}}^{\text{Clear}}$

- Estimate cloud fractions from cloudy and predicted clear radiances (predictor channels)
- Extrapolate all radiances to clear conditions
 - Noise amplification

Cloud-Cleared – Calc(ECMWF)

Map radiances onto pressure using P centroid of weighting functions. Smoothed differences shown by line (method is dubious near surface)

Consistency of Cloud-cleared and **Calculated Radiances**

Freq=715.94 cm⁻¹ (Ch 232) 20020906 G-68 Freq=715.94 cm⁻¹ (Ch 232) 20020906 G-68 CC - Calc (ECMWF) CC - Calc(AIRS) -72 -72 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 **ITOVS-13** 2003 November 03

International TOVS Study Conference, 13th, TOVS-13, Sainte Adele, Quebec, Canada, 29 October-4 November 2003. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2003.