# An Alternate Algorithm to Evaluate the Reflected Downward Flux Term for a Fast Forward Model

DS Turner

Meteorological Service of Canada Downsview, Ontario, Canada

ITSC-XIII, Sainte-Adèle, Quebéc, CANADA 2003

- at ITSC12 demonstrated the current algorithms for the attenuated reflected downward flux term did not work well for all the channels considered
- in general small biases existed only for high emissivities & low altitudes



▲ HIRS, ● AIRS



Item affects land retrievals where emissivities may be considerably less than .9 and p<sub>s</sub> < 800hPa</p>

require a fast scheme that is acceptable for a wider range of emissivities and surface pressures Top of the atmosphere (TOA) radiance is the sum of 3 terms: attenuated surface emissions attenuated atmospheric upward emissions attenuated reflected downward flux

$$<\Re_{s}(\theta,p_{s})> = \langle \varepsilon B(T(p_{s})) \Re(\theta,p_{s}) \rangle + \langle \int_{o}^{p_{s}} B(T) d\Re(p,\theta) \rangle + \langle r \Re(\theta,p_{s}) F^{\downarrow}(p_{s}) \rangle$$

| p - pressure        | $\theta$ - satellite zenith angle |
|---------------------|-----------------------------------|
| B - Planck function | $\Im$ - p to TOA transmittat      |

S - p to TOA transmittance

ε - surface emissivity

 $F^{\downarrow}$  - downward flux

r - surface reflectivity

subscript 's' denotes a topographical or cloud top surface

 $\mathfrak{R}$   $\mathfrak{R}$ ,  $\mathfrak{F}$ ,  $\mathfrak{B}$ ,  $\varepsilon$  and r are functions of wavenumber

• 
$$< f > = \int_{\Delta \tilde{v}} \phi(\tilde{v}) f(\tilde{v}) d\tilde{v} \qquad \phi$$
 - response function

variables of the form < f > are evaluated using MSC's Fast Line-By-Line (FLBL) radiative transfer model

Attenuated reflected downward flux (ARDF) term is approximated as

$$\left\langle r \,\mathfrak{S}(\theta, p_s) F^{\downarrow}(p_s) \right\rangle \approx r \left\langle \mathfrak{S}(\theta, p_s) F^{\downarrow}(p_s) \right\rangle \approx r \left\langle \mathfrak{S}(\theta, p_s) \right\rangle \left\langle F^{\downarrow}(p_s) \right\rangle$$

$$r < \mathfrak{R}_s^{\theta} > \left[ \frac{1}{\pi} \left( \sum_{k=1}^s \frac{< \mathfrak{R}_{k-1}^{\varphi} > - < \mathfrak{R}_k^{\varphi} >}{< \mathfrak{R}_{k-1}^{\varphi} > < \mathfrak{R}_k^{\varphi} >} < \overline{B}_k > \right) < \mathfrak{R}_s^{\varphi} > \right]$$

assume <sup>ISF</sup> r is constant across φ

- isotropic reflection for this work, ie  $r = (1-\epsilon)/\pi$
- approximate  $F^{\perp}$  by replacing the angular integration of  $\mathfrak{F}^{f}$  with  $\mathfrak{F}(\varphi)$ , sec $\varphi$  is the diffusivity factor, usually set to 1.66
- $\square < a b >$  can be decomposed as < a > < b >

RTTOV 
$$\Im$$
  $\Im$   $(\phi) = \Im$   $(\theta)$ 

(Saunders, 1999)

MSCFAST  $\Re (\varphi) = \Im (1.66)$  (Garand, 1999)  $\Re$  requires 2<sup>nd</sup> pass of transmittance model

- past experience tells us that  $\langle a | b \rangle$  can not be decomposed as  $\langle a \rangle \langle b \rangle$  (Turner, 2001)
- test for reliability of the decomposition of the return transmittance and the downward flux using the FLBL, ie; how well does  $\delta BT = 0$ ?

```
\delta BT = BT(\left\langle \mathfrak{S}(\theta, p_s) F^{\downarrow}(p_s) \right\rangle) - BT(\left\langle \mathfrak{S}(\theta, p_s) \right\rangle \left\langle F^{\downarrow}(p_s) \right\rangle)
```

- decomposition fares poorly
  - plot the bias of  $\delta BT$  across 52 ECMWF profiles for  $\epsilon$ =.98 &  $\epsilon$ =.7
  - many channels exhibit large errors that increase with  $\theta, \epsilon \mbox{ \& } p_s$



AIRS352, 752.07 (cm<sup>-1</sup>) AIRS1018, 1007.87 (cm<sup>-1</sup>)

if decomposition of S F<sup>1</sup> is unreliable, then further decomposition of F<sup>1</sup> into [] is probably not reliable, thus new scheme must account for errors due to these decompositions

| 400<br>600<br>800         | A0889<br>955.554          | A0890<br>955.945               | A0891<br>956.337                | A0892<br>956.729        | A0893<br>957.121         | A0894<br>957.513        | A0895<br>957.906              | A0896<br>958.299        | A0897<br>958.692         | A0898<br>959.086          | A0899<br>959.48         | A0900<br>959.874          |
|---------------------------|---------------------------|--------------------------------|---------------------------------|-------------------------|--------------------------|-------------------------|-------------------------------|-------------------------|--------------------------|---------------------------|-------------------------|---------------------------|
| 400<br>600<br>800         | A0901<br>960.269          | A0902<br>960.664               | A0903<br>961.06                 | A0904<br>961.455        | A0905<br>961.851         | A0906<br>962.248        | A0907<br>962.644              | A0908<br>963.041        | A0909<br>963.439         | A0910<br>963.836          | A0911<br>964.234        | A0912<br>964.633          |
| 400<br>600<br>800         | A0913<br>965.031          | A0914<br>965.43                | A0915<br>965.83                 | A0916<br>966.229        | A0917<br>966.63          | A0918<br>967.03         | A0919<br>967.431              | A0920<br>967.832        | A0921<br>968.233         | A0922<br>968.635          | A0923<br>969.037<br>-1  | A0924<br>969.439<br>-1    |
| 1000<br>400<br>600<br>800 | A0925<br>969.842          | A0926<br>970.245               | A0927<br>970.648                | A0928<br>971.052        | A0929<br>971.456         | A0930<br>971.86         | A0931<br>972.265<br>-1        | A0932<br>972.67         | A0933<br>973.075         | A0934<br>973.481          | A0935<br>973.887        | A0936<br>974.294<br>-1    |
| 1000<br>400<br>600<br>800 | A0937<br>973.818          | A0938<br>974.225               | A0939<br>974.631                | A0940<br>975.039        | A0941<br>975.446<br>-1-  | A0942<br>975.854        | A0943<br>976.262<br>-1-       | A0944<br>976.67         | A0945<br>977.079         | A0946<br>977.488<br>-1    | A0947<br>977.898        | A0948<br>978.308          |
| 1000<br>400<br>600<br>800 | A0949<br>978.718          | A0950<br>979.128               | A0951<br>979.539                | A0952<br>979.95         | A0953<br>980.362         | A0954<br>980,774        | A0955<br>981.186              | A0956<br>981.599        | A0957<br>982.011         | A0958<br>982,425          | A0959<br>982.838        | A0960<br>983.252          |
| 1000<br>400<br>600<br>800 | A0961<br>983.667          | A0962<br>984.081               | A0963<br>984.496 ~              | A0964<br>984912 🥿       | A0965<br>985.327         | A0966<br>985.743        | A0967<br>986.16               | A0968<br>986.576        | A0969<br>986.993         | A0970<br>982,411          | A0971<br>987.829<br>_1  | A0972<br>988.247          |
| 1000<br>400<br>600<br>800 | A0973<br>988,665<br>-1 _  | A0974<br>969.084<br>-1         | A0975<br>969.503<br>-1          | A0976<br>989.923        | A0977<br>990.343         | A0978<br>990.763<br>-1  | A0979<br>1911.183<br>-1       | A0980<br>991.604        | A0981<br>992.026         | A0982<br>992,447          | A0983<br>992.869        | A0984<br>993.292          |
| 1000<br>400<br>600<br>800 | A0385<br>998,714<br>-1 ~  | A0986<br>994137                | A0987<br>999.561                | A0988<br>994.985        | A0989<br>995.409         | A0990<br>995.833        | A0991<br>996.258              | A0992<br>996.683        | A0993<br>997.109         | A0994<br>997.535          | A0995<br>997.961        | A0396<br>998.387          |
| 1000<br>400<br>600<br>800 | A0997<br>998.814          | A0998<br>999.242               | A0393<br>393.67 _4 ~            | A1000<br>1000.098       | A1001<br>1000.526 ~~     | A1002<br>1000.955       | A1003<br>1001.384             | A1004<br>1001.8¥3<br>-4 | A1005<br>1002:243<br>-4  | 91006<br>1002.674_4~      | A1007<br>1003.104       | A1008<br>1003.535 ~~      |
| 1000<br>400<br>600<br>800 | A1009<br>1003.966         | A1010<br>1004.398_4            | A1011<br>1004.88                | A1012<br>1005.263       | A1013<br>1005.695        | A1014<br>1006.129       | A1015<br>1006.5624            | A1016<br>1086.396<br>-4 | A1017<br>100743<br>-4    | A1018<br>1007.865         | A1019<br>1008.34        | A1020<br>1088,735<br>-4~  |
| 1000<br>400<br>600<br>800 | A1021<br>1009.171<br>-4   | A1022<br>1009.607<br>-4        | A1023                           | A1024<br>1010.48_4 ~_   | A1025<br>1010-918<br>-4  | A1026<br>1011,355<br>-4 | A1027<br>1019,793<br>-4 -     | A1028<br>1012/231       | A1023<br>1012.67_4       | A1030<br>1013.709<br>-4 - | A1031<br>10135549<br>-4 | A1032<br>1013.388<br>-4~_ |
| 1000<br>400<br>600<br>800 | A1033<br>1014.429         | A1034<br>1014.889<br>-4 ~.     | A1035<br>1015.31<br>-4          | A1036<br>1015.751<br>-4 | A1037<br>1016 193<br>_4- | A1038<br>1016.635       | A1039<br>1017.076_4 ~         | A1040<br>1017.52 _4 ~   | A1041<br>1017.984<br>-4- | 91042<br>1018.407_4 ~     | A1043<br>1018.8514      | A1044<br>1019.296_4~      |
| 400<br>600<br>800         | A1045<br>1019.74          | A1046<br>1020.185              | A1047<br>1020.631               | A1048<br>1021.077       | A1049<br>1021.523        | A1050<br>1021.969       | A1051<br>1022.416             | A1052<br>1022.864       | A1053<br>1023.312 _4 .   | A1054<br>1023.76 _4 -     | A1055<br>1024208<br>-4  | A1056<br>1024692<br>-4 -  |
| 400<br>600<br>800         | A1057<br>1025.106         | A1058<br>1025.556<br>-4        | A1059<br>1026006<br>-4-         | A1050<br>1026.457<br>-4 | A1061<br>1026,907<br>-4  | A1062<br>1087.359<br>-4 | A1063<br>1027.81<br>-4        | A1064<br>1028.262       | A1065<br>1028.715<br>-4  | A1066<br>1029.167<br>-4 - | A1067<br>1029,62<br>-4  | A1068<br>1030.0744        |
| 400<br>600<br>800<br>1000 | A1069<br>1030.528<br>_4 - | <b>91070</b><br>1030/982<br>-4 | A1071<br>1031.4 <b>97</b><br>-4 | A1072<br>1031.892       | A1073<br>1032.347        | A1074<br>1032.803       | <b>91075</b><br>1033.26<br>-4 | A1076<br>1033.716       | <b>91077</b><br>1034173  | A1078<br>1034,631<br>-4   | A1079<br>1035.089       | A1080<br>1035.547         |

Sampling of biases across the 52 ECMWF profiles for  $\epsilon$ =.98 (AIRS 889-1080)

$$\delta \mathrm{BT} = \mathrm{BT}(\left\langle \mathfrak{F}(\theta, p_s) F^{\downarrow}(p_s) \right\rangle) - \mathrm{BT}(\left\langle \mathfrak{F}(\theta, p_s) \right\rangle \left\langle F^{\downarrow}(p_s) \right\rangle)$$

### **Alternate Algorithm**

assume that for a given  $(\theta, p_s)$  there exists a value  $\kappa$  such that replacing  $\mathfrak{F}(\theta)$  with  $\mathfrak{F}^{\kappa}(\theta)$  provides a good estimate of the ARDF term

$$r < \mathfrak{F}_{s}(\theta) > \left[ \frac{1}{\pi} \left( \sum_{k=1}^{s} \frac{<\mathfrak{F}_{k-1}^{\theta} >^{\kappa(p_{s},\theta)} - <\mathfrak{F}_{k}^{\theta} >^{\kappa(p_{s},\theta)}}{<\mathfrak{F}_{k-1}^{\theta} >^{\kappa(p_{s},\theta)} < \mathfrak{F}_{k}^{\theta} >^{\kappa(p_{s},\theta)}} < \overline{B}_{k} > \right) < \mathfrak{F}_{s}^{\theta} >^{\kappa(p_{s},\theta)} \right]$$

 ${}^{\tiny \hbox{\tiny ISS}}$   $\kappa(\,\theta,p_{_{s}}\,)$  is interpolated from a pre-determined look-up table

- advantages replaces the 2<sup>nd</sup> pass of the fast transmittance model with a lookup table followed by an exponentiation should be faster
  - accounts for decomposition of  $< \Im F^{\downarrow} >$
  - preserves current program structures hence, easier to implement

### **κ** - Lookup Table Determination

Image we develop the basic fast transmittance model (ie ε=1)
 Image we develop the basic model, minimize

$$\left\langle \mathfrak{S}(\theta, p_s) F^{\perp}(p_s) \right\rangle - \{\mathfrak{S}_s^{\theta}\} \left( \sum_{k=1}^s \frac{\{\mathfrak{S}_{k-1}^{\theta}\}^{\varkappa(p_s,\theta)} - \{\mathfrak{S}_k^{\theta}\}^{\varkappa(p_s,\theta)}}{\{\mathfrak{S}_{k-1}^{\theta}\}^{\varkappa(p_s,\theta)} \{\mathfrak{S}_k^{\theta}\}^{\varkappa(p_s,\theta)}} \{\overline{B}_k^{\theta}\} \right) \{\mathfrak{S}_s^{\theta}\}^{\varkappa(p_s,\theta)} \left| \leq \delta$$

for a set of  $\kappa(\theta,\,p_{_{S}}\,)$  for each atmosphere

table entry is the average  $\kappa(\theta, p_s)$  across the atmospheres

NOTE:  $\langle f \rangle$  - FLBL model,  $\{f\}$  - fast model

## Comparisons

- <sup>™</sup> compare 3 modified forms of RTATOV (Saunders, 1999)
  - add extra levels at .005, .014, .037, 1048.51 & 1085 hPa
  - fast transmittance model coefficients determined from FLBL calculations using ECMWF 52 diverse profile set (AIRS inter-comparison)
  - 6 secants (1, 1.25, 1.5, 1.75, 2 & 2.25)
- IS M1,  $\phi = \theta$ ,  $\varkappa = 1$  single pass thru' fast transmittance model
- Solution M2,  $\varphi = \theta$ ,  $\varkappa = 1$  two passes thru' fast transmittance model
- M3, φ = θ,  $κ = κ(θ, p_s)$  single pass thru' fast transmittance model followed by exponentiation of ℜ (θ)
  - $\kappa(\theta, p_s)$  determined for 24  $p_s$  (223 to 1085hPa) and 6 secants (1, 1.25, 1.5, 1.75, 2 & 2.25)
- realuate BT all 3 models & FLBL for
  - 24 surface pressures (223 to 1085hPa0
  - 21 emissivities (0 to 1),  $r = 1/\pi$  to 0
  - 52 ECMWF atmospheres
  - 2378 AIRS channels
- compare bias and standard deviation (stdv) across 53 profiles of the difference,

$$BT(\langle R^{surf} + R^{\dagger} + r \Im(\theta, p_s) F^{\downarrow}(p_s) \rangle) - BT(\langle R_{surf} \rangle + \langle R^{\dagger} \rangle + r \langle \Im(\theta, p_s) \rangle \langle F^{\downarrow}(p_s) \rangle)$$



Fig: M1, M2 & M3 bias & stdv as a function of channel for sec  $\theta$  = 1,  $\epsilon$  = .7 and  $p_s$  = 1013hPa

- IS M2 & M3 fare much better than M1
- not clear which performs better M2 or M3 wrt bias or stdv
- IST on average M3 is ~1.25 slower than M1 and M2 is ~1.6 slower than M1
- <sup>IS™</sup> M3 faster than M2



Bias (left) & stdv (right) for channel 1018 (1007.86(cm<sup>-1</sup>)) as a function of  $\theta$ ,  $\epsilon$  &  $p_s$ 

- strong  $\theta$  dependency in M1, weaker in M2 & M3
- small region of low bias & stdv in M1 & M2
- IP M3 applicable over a wider range of  $\varepsilon \& p_s$
- M3 models the ARDF term very well in terms of bias
- stdv doesn't improve using M3, but not any worse



- Fig: Bias (left) & stdv (right) for channel 610 (851.8(cm<sup>-1</sup>)) as a function of  $\theta$ ,  $\epsilon$  &  $p_s$
- strong  $\theta$  dependency in M1, weaker in M2 & M3
- small region of low bias & stdv in M1
- ${}^{\hbox{\tiny I\!S\!T}}$  M2 applicable over a wider range of  $\epsilon$  &  $p_{_s}$
- Reference example of when M2 better than M3
- some improvement in stdv over M1



Fig: More examples of the bias & stdv comparisons

### Summary

- algorithm effects bias more than stdv
- IS both M2 & M3 are an improvement over M1
- <sup>IS™</sup> M3 is faster than M2
- M2's &/or M3's stdv are generally no worse than M1's
- useful range of  $\varepsilon$  and  $p_s$  increased (ie manageable biases)
- $\sim 65\%$  of the channels perform as well or better than M2 with M3

## Problems

the bias vs channel curve contains many spikesfrequently M2 is better than M3 at these spikes



Fig: Upper box illustrates the bias curves for  $\theta=0$ ,  $\epsilon=.6$  and  $p_s=1013hPa$  (M1,M2, M3). The middle box is an enlargement of the upper box superimposed on a TOA total transmittance curve. The M1, M2, M3 values of { $\Im$ } are marked by circles. The lower box is a further enlargement of the middle box with some AIRS spectral response functions superimposed.

IS problem channels are collocated with the core/near wing of  $H_2O$  spectral lines, these regions are very non-linear

M3 needs more consideration prior to implementing M3

## Conclusions

- the 2 pass transmittance model is preferable over the simple "reflection" model some tuning of the diffusivity factor may be required
- new algorithm is faster than current algorithms, but does not work for 100% of the channels ideally would like to use M3 exclusively, but need to "fix the spikes" first
- note that M3 does not depend on the relationship between r & ε, they can be independent of each other only require that they are constant over the response function

International TOVS Study Conference, 13<sup>th</sup>, TOVS-13, Sainte Adele, Quebec, Canada, 29 October-4 November 2003. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2003.