The AMSU Observation

 Correction and Its Application Retrieval Scheme, and TyphoonAnalysis

Kung-Hwa Wang, Chien-Ben Chor Central Weather Bureau, Taipei, Taiwan

Introduction

* Variational Retrieval Scheme can get better result under good precision initial guess(Eyre, 1989)
* Important factor is the correction of satellite observation bias and estimated random error
* Obs err = Sat Obs Tb- Simulation Tb
* Establish a statistical correction model along FOV

Methodology

* Minimize Cost function(Rodgers,1976)
$J(x)=\left(x-x^{b}\right)^{T} C^{-1}\left(x-x^{b}\right)+\left\{y^{m}-y(x)\right\}^{T} E^{-1}\left\{y^{m}-y(x)\right\}$
* Using Newtonian iteration method(Eyre,1989)
* Surface emissivity (grody 1988)
* Retrieval parameters: profile of temp. and humility, surf. air temp., surf. Pres., ozone, cloud height, cloud amount.

Error covariance

* Back ground error C: 12 hours forecast error by statistic. Prior 24 forecast analysis minus prior 12 hours forecast analysis.(NMC method)
* Obs. Error E = Instrument bias, data proc. Err, RTE model err.,Input parameters' err. => System err + Random err.

Estimate bias correction and random error

* Make sure Obs Tb and Est Tb between -20K \& 20K
* If (Est Tb - Obs Tb) > 3*RMSE then is bad data
* Tb*=aTb+b for each channel and FOV on 900,000 points
* Concern about input parameters err(12 hours forecast)

Real data retrieval

* 2002.6.22-23 NOAA-15
* Point was selected when retrieval successful and there are sounding data within 200 Km away, $\mathrm{SI}<20$

2002.6.22 927points

SAMPLE NUMEER 927
NOAA 15 TIME 2002/ 6/22/23/51

2002.6.22

Random
Error*6
(329points)

* 2003.6.2
 * 592point
 * Random
 * Error*7

Successful retrieval convergence rate when random error enlarged

Case	correc tion	$\mathrm{X5}$	$\mathrm{X6}$	$\mathrm{X7}$	X 8	X 9	x 10
$\mathbf{1}$	99.61 $\%$	4.97%	45.12 $\%$	68.07 $\%$	95.10 $\%$	99.10 $\%$	99.57 $\%$
$\mathbf{2}$	96.29 $\%$	3.87%	39.13 $\%$	63.66 $\%$	85.17 $\%$	96.29 $\%$	99.28 $\%$
$\mathbf{3}$	99.35 $\%$	0.27%	8.11%	42.55 $\%$	86.82 $\%$	98.30 $\%$	98.70 $\%$

Sub conclusion

* Observation error is smaller then background error.
* Over ocean the results of retrieval is better than over land, for surface emissivity is more complicated.
* This adjustment procedure is significant in improvement of the utilization on AMSU data.

Monitoring Typhoon

* It has been examined the relationship between temperature anomalies and the surface wind and central pressure of tropical cyclones.(Kidder, 2000)
* Make Limb Correction to each FOV before retrieval or make different set of coefficient to each FOV. Retrieved RMS error < 1.75K(Zhu,2002)

Real Images before \& after Limb correction

AMSU CH01 IMAGE

AMSU CH01 IMAGE
L1D_NOAA17_20030228_0157_03532

Real image before \& after Limbcorrection
AMSUCH08IMAGE
AMSUCH08IMAGE
L1D_NOAA15_20030610_2257_26380

How to do Limb Correction

1. Radiation transfer Model

2.Statistical Methods

For the Limb effect is asymmetry a)Mitchell D. Goldberg (The Limb Adjustment of AMSU-A Observation: Methodology and Validation) b)Nesdis: NOAA Satellite and information service, Michael Chalfant

The methodology of Limb correction

 $y=X^{T} b$* b is a vector of coefficients
* X are means over latitude bands from a large time period
* Y The limb adjusted brightness temperature

Least squares fit to the measured data. Define a penalty functiof

$$
F(b)=\left(X^{T} b-y\right)^{T}\left(X^{T} b-y\right)+\gamma\left(b-b_{p}\right)^{T}\left(b-b_{p}\right)+2 \lambda\left(1-u^{T} b\right)
$$

λ, γ are Lagrange multipliers. X is a matrix of x, y is a vector of means for all latitude bands. u is a vector of ones. b_{p} is the set of physical coefficients derived from weighting function.
To minimize F with respect to b , derivative and equate to zero
$2 X\left(X^{T} b-y\right)+2 \gamma\left(b-b_{p}\right)-2 \lambda u=0$
solution $\quad b=\left(X X^{T}+\mu\right)^{-1}\left(X y-\gamma b_{p}-\lambda u\right)$
constrain $\quad u^{T} b=1$

$$
\lambda=\left[1-\left(X X^{T}+\gamma l\right)^{-1}\left(X y-\gamma b_{p}\right)\right] /\left[u^{T}\left(X X^{T}+\gamma l\right)^{-1} u\right]
$$

NOAA16_20030630_0416_14273

NOAA-16

NOAA17_20030630_1400_05274
Comparison for Limb Correction
NOAA-1

NOAA-15 ch 1 Raw - Michael
 AMSU CH01 IMAGE
 AMSU CH01 IMAGE

NOAA17 Ch5 Raw - Peter

Typhoon monitoring \& 2D \& 3D wind vector retrieval

* 2D wind retrieval algorithm followed Kidder's (2000) paper
* According 250hPa Max. anomalies Temp to define center of typhoon
* 3D wind is calculated by gradient wind equation
* Appreciate Tong Zhu, Da-Lin Zhang and Allen Huang assistance

2001.0911-0912

AMSU CH16 IMAGE

AMSU CH16 IMAGE

Typhoon 2001.10.16

TINE 3001/10/18/39/6/

2001.10.16.2306

TRIE $3001 / 10 / 16 / 29 / 6 /$

Conclusion

* AMSU can be an auxiliary instrument on tropical cyclone observation
* Identify no eye typhoon is useful even with poor resolution
* After significant adjusted AMSU data may improved weather analysis.

International TOVS Study Conference, $13^{\text {th }}$, TOVS-13, Sainte Adele, Quebec, Canada, 29 October-4 November 2003. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2003.

