

Retrieving Infrared Land Surface Emissivity With AIRS Observations

Xuebao Wu^{*#}, Jun Li[&], Yuanjing Zhu^{*}, Paul Menzel[&] and Wenjian Zhang[#]

* Department of Atmospheric Science, Peking University, Beijing, China [#] National Satellite Meteorological Center, Beijing, China [&] CIMSS/SSEC/University of Wisconsin-Madison, USA

Outline

Sensitivity study for land surface emissivity

Sensitivity study for atmospheric and surface parameters

The retrieval method: MLEV

Case study

Future plan

Sensitivity Study for Land Surface Emissivity

Fast Model:SARTA (Stand-Alone Rapid Transmittance Algorithm) developed by L.L.Strow, S.Hannon, and H.Mottler

Profiles: six model profiles

Parameters: zero satellite angle

sea level surface for 6 model profiles

increment of LSE from 0.97 to 0.98

others

Delta TB from Delta EMIS=0.01

Delta TB from Delta EMIS=0.01

Delta TB from Delta EMIS=0.01

Sensitivity Study for Atmospheric and Surface Parameters

- Fast Model:SARTA
- **Profiles: U.S. 1976 Standard Atmosphere**
- Increment/Decrement: (700hPa—1000hPa for Low Trop)
 - **Increase of surface temperature by 1K;**
 - Increase of low troposphere temperature by 1K;
 - **Decrease of low troposphere humidity by 15%;**
 - Decrease of ozone by 10%.

Retrieval LSE with LMEV Method

$$\mathcal{E}_{v} = \frac{R_{v}^{obs\uparrow} - R_{v}^{atm\uparrow} - \tau_{v}\overline{R}_{v}^{\downarrow}}{\tau_{v} \left(B_{v} \left(T_{s} \right) - \overline{R}_{v}^{\downarrow} \right)}$$

Best fit to LST/LSE when Local Spectral Variance in Emissivity is Minimum (Robert Knuteson etc)

A Case Study

Retrieval Algorithm: LMEV AIRS Fast Model: SARTA AIRS L1B Data: Granule 182 (6mins, 118MB) Sept.6,2002 18:11-18:17 (GMT) Atmospheric Profile: ECMWF profile of Sept.6,2002 at 18Z

AIRS Clear Flag from MODIS Cloud Mask

AIRS Clear Flag from MODIS Cloud Mask for G182

AIRS Cloud Flag from MODIS Cloud Mask

0.5

0.4

0.6

0.7

0.8

0.9

0.1

0.2

0.3

Mean and Std.of the Obs-Calc AIRS Brightness Temperature for G182 (1391 Clear FOVs/12150)

The Upwelling/Downwelling Radiance and Total Transmittance

Wavenumber(cm⁻¹)

The Retrieved LSE Spectral with MLEV

The Comparison Between Obs. and Calc. BT with Unit/Retrieved LSE

Wavenumber(1/cm)

-4 –

Update of model : Fast Model and Retrieval Algorithm Initial Guess of LSE:

1) in accordance with IGBP Atlas

2) in accordance with NDVI

Validation

NDVI Distribution Over China

18 Classes of IGBP Surface Type

Thanks!

International TOVS Study Conference, 13th, TOVS-13, Sainte Adele, Quebec, Canada, 29 October-4 November 2003. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2003.