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Abstract

In recent years, the assimilation of satellite data has become a vital component of the global and
regional assimilation systems at the Canadian Meteorological Centre (CMC). Moreover, the direct
assimilation of satellite radiance measurements from AMSU-A, AMSU-B, and the GOES water vapor
channel has resulted in notable improvements in the short and medium range CMC forecasts. This has
been demonstrated in Observation System Experiments conducted by CMC.

In preparation for the operational assimilation of Special Sensor Microwave Imager (SSM/I) data
in the 4D-Var global analysis system at CMC, two 3D-Var experiments are conducted. In the first
experiment, the assimilation of clear-sky, open-ocean brightness temperatures from the 7 SSM/I
microwave channels is added to the operational configuration of the global analysis system. In the
second experiment, stricter filtering of AMSU data is applied together with the addition of the SSM/I
data. More specifically, AMSU-A CH3 (50.3 GHz) is removed due to its non-negligible sensitivity to
clouds, and more aggressive filtering of AMSU-B CH2 (150.0 GHz), CH3 (183.3+1 H GHz), CH4
(183.3£3 H GHz), and CHS5 (183.3+7 H GHz) is invoked using CH2 to identify cloudy pixels. In the
current quality control procedures for AMSU-B, an effective precipitation screen is present, however,
there is no method of detecting and removing cloudy observations.

In both experiments, improvements are evident in the analysed integrated water vapour, surface
wind speed, and daily precipitation rate fields when compared against independent observations.
Furthermore, for the second experiment gains are realized in the forecasts when validated against
radiosonde data. Other indicators such as anomaly correlation, RMSE, and QPF scores show a net
positive effect. Overall, the second experiment shows better results than the first. In particular, the
additional filtering of AMSU-B CH2-5 is identified as an important modification to the current
operational configuration.

Introduction

At the Canadian Meteorological Centre (CMC), improvements in the global analyses and
forecasts in recent years have largely been realized as a result of an increased assimilation of satellite
data. Since March of 2005, the CMC global analyses are generated using a 4D-Var assimilation
scheme which assimilates conventional data (e.g. radiosonde, aircraft, wind profilers), satellite derived
automated motion vectors, and satellite radiances (GOES-W, GOES-E, AMSU-A aboard NOAA-15, -
16, and AQUA, and AMSU-B aboard NOAA-15, -16, and -17).

One of the anticipated changes to the operational analysis system over the next year is the
addition of Special Sensor Microwave Imager (SSM/I) data. In preparation for this, experiments are
conducted to satisfy two primary objectives. The first is to determine the impact of the assimilation of
SSM/I brightness temperatures in clear-skies and over open oceans. The second is to test a stricter
filtering regime for the AMSU data currently assimilated. The motivation for this modification will be
discussed in the subsequent section. This will be followed by descriptions of the setup and results of
the two experiments. The paper ends with conclusions and a brief discussion of future work.
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Modifications to the Selection Process for AMSU Data

Currently, the CMC assimilates from the AMSU-A instrument channels 3 through 10 over oceans
and channels 6 through 10 over land. Observations in precipitating and cloudy regions are filtered
using algorithms (Grody et al. 2001) which compute the scattering index and cloud liquid water
(CLW) amount, respectively. The CMC’s variational analysis system is not capable of assimilating
cloudy observations since CLW is not an analysed variable and, moreover, the radiative transfer
model assumes that CLW is zero. The cloud filter functions by removing pixels with a CLW value
greater than 0.3 mm. However, AMSU-A channel 3 exhibits a moderate sensitivity to clouds (Fig. 1),
which raises the possibility that the 0.3 mm threshold is not sufficiently low to properly remove
observations affected by moisture. The danger is that a bias in the water vapour field might be
introduced where observations in cloudy, non-precipitating regions are assimilated since a higher
brightness temperature would induce a larger humidity value in the analysis. For this reason, in the
second experiment all observations from AMSU-A channel 3 are eliminated from the assimilation
process.

From the AMSU-B instrument, channels 2 though 5 and channels 3 and 4 are assimilated
operationally over oceans and land, respectively. A precipitation screen based on the scattering index
algorithm developed by Bennartz et al. (2002) removes rainy observations. However, no cloud filter is
present. Due to the moderate sensitivity of AMSU-B channel 2 to clouds (Fig. 2), this channel is
subjected to additional filtering in the second of our experiments. This enhanced filtering is also
applied to AMSU-B channels 3 through 5, due to their small sensitivity to clouds at mid-levels (Fig
2.). This filter is essentially a pseudo cloud filter, and it is the same as that applied at Meteo-France
and the European Centre for Medium-Range Weather Forecasts (ECMWF). It removes AMSU-B
observations over oceans where the absolute difference between the observed and background
brightness temperatures for AMSU-B channel 2 exceeds 5 K.

Experiment Setup

The experiments are executed over a five week period during the summer of 2003, from June 24"
to July 31%. To avoid any spurious effects that can occur when changes are made to the analysis
system, the first week of analyses are discarded. A control simulation (CNTL) is produced using the
same configuration as that employed operationally during July 2003. At this time the 3D-Var
assimilation scheme was active and the trial fields were produced using the CMC’s 0.9° resolution
global model with 28 terrain-following vertical levels. The conventional observations included in
CNTL are from surface, dropsonde, radiosonde, and aircraft sources. Input data also consists of the
direct assimilation of radiances from the GOES-W geostationary satellite and brightness temperatures
from the AMSU-A and AMSU-B instruments aboard the NOAA-15, -16, and -17 polar orbiters.

The first experiment (EXP1) is produced by adding clear-sky, open-ocean observations from the
SSM/I instruments aboard the DMSP-13, -14, and -15 satellites to the CNTL setup. All 7 channels of
SSM/I are assimilated. The frequencies and polarities of these channels are 19.35 V,H, 22.235 V, 37.0
V,H, and 85.5 V,H GHz. The SSM/I is an imager and, therefore, provides information on vertically
integrated quantities such as IWV and CLW. It is not characterized by a strong sensitivity to air
temperature. The horizontally polarized channels also show a moderate sensitivity to SWS. In the
second experiment (EXP2), the SSM/I data is added while select AMSU data is removed. This refers
to the complete rejection of AMSU-A channel 3, as well as the application of the pseudo cloud filter
to AMSU-B channels 2, 3, 4, and 5, as described in the previous section.

282



International TOVS Study Conference-XIV Proceedings

2 Loyer: 850-700 hPg, TPW=52.46kgm 2, ElA=30°
1 L L T
<
= 6
3
o =10
o
I -20
8 CH1: 23.8 GHz
5 —30 CH2: 31.4 GHz
i 303 ¢
L. R . # 2
& %0 CH15: 89.0 GHz
-50 : ; X ; ;
0.0 0.1 0.2 0.3 0.4 0.5 0.6
4 Loyer: 700-500 hPo, TPW=52.46kgm™?, ElA=30°
1 T T T
<
= i
S
o =10
o
I =20
e
g CH1: 23.8 GHz
3 =30 CH2: 31.4 GHz
i 303 o
| : = 2
& 40 GH15: 89.0 GHz
-50 ; ; : ; ;
0.0 0.1 0.2 0.3 0.4 0.5 0.6
LWP (kg m™%)

Fig. 1: Sensitivity of AMSU-A channels to clouds (LWP = Liquid Water Path in kg m?). Top
(bottom) panel represents a cloud layer between 850 and 700 hPa (700 and 500 hPa).
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Fig. 2: Same as in Figure 1, except for AMSU-B channels.
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The analyses generated from each of the cycles are studied using monthly averaged fields of
integrated water vapour (IWV) and surface wind speed (SWS) derived from the Advanced Microwave
Scanning Radiometer (AMSR-E) aboard the AQUA spacecraft and QuikSCAT, respectively. Daily
precipitation rates (DPR), computed by accumulating the 6-hr forecast amounts extracted from the
trial fields, are evaluated using observed values from the Global Precipitation Climatology Project
(GPCP). Ten-day forecasts for each of the cycles are validated using both radiosonde observations
(RAOBS) and analyses from the same experiment. As part of the validation, standard deviation (SD),
bias, root mean square (RMS) error, and anomaly correlation (AC) statistics are generated. Finally,
quantitative precipitation forecasts (QPFs) over North America are verified using 3 categorical
measures — bias, threat score, and equitable treat score.
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Fig. 3: A comparison of monthly mean IWV (kg m?) from the CNTL, EXP1, and EXP2
analyses against that observed by the AMSR-E. The top diagram shows correlation on the
left and standard deviation on the right. The bottom diagram shows bias.

Experiment Results

With the addition of SSM/I data to the CNTL configuration (EXP1), improvements are evident in
the mean analysed fields that are evaluated using independent observations. The largest impact of
SSM/I1 is illustrated in the comparison of the mean analysed IWV for July against that observed by the
AMSR-E (Fig. 3). In every 20 degree latitude band between 60°S and 60°N positive gains are made
with respect to correlation (CORR), SD, and bias. In the comparison of SWS to QuikSCAT
observations, small gains in CORR and SD are made almost everywhere on the globe (not shown).
However, the bias deteriorates a very small amount everywhere except in the Southern Hemisphere
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(SH) between 40° and 60°S. In this region the addition of SSM/I data has improved the analysed SWS
by increasing it to more closely match that observed by QuikSCAT. Over the SH circumpolar ocean,
the operational analysed winds are generally underestimated. With respect to DPR, small
improvements are evident in all of the statistical fields, but primarily over tropical regions (not
shown).
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Fig. 4: Difference in the number of observations assimilated for AMSU-B channel 3 between
EXP1 and EXP2 (a). Mean CLW (mm) (b) and surface rain rate (mm hr™') (c) derived from
DMSP-15 SSM/I observations for July 2003 (from Remote Sensing Systems:
www.remss.com).

Charts comparing the monthly mean analysed IWV, SWS, and DPR from EXP2 to the observed
quantities exhibit very similar characteristics to those found with EXP1. Two exceptions are noted.
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The first consists of slightly improved CORR and SD scores for the IWV and DPR fields over most of
the globe for EXP2 over EXP1. The second is a small increase in SWS bias from EXP1 to EXP2
within the 40° to 60°S region. Thus, the complete removal of AMSU-A channel 3 and partial removal
of AMSU-B channel 2, which are both slightly sensitive to SWS in mid-latitude atmospheres, results
in a slower SWS over the SH circumpolar ocean. This offsets slightly the gains made by adding
SSM/I data.

The effectiveness of the AMSU-B channel 2 pseudo cloud filter applied in EXP2 is demonstrated
in Figure 4. The global distribution of the observations rejected by this filter over the month of July
for AMSU-B channel 3 is plotted in Figure 4a. The distributions for channel 4 and 5 are very similar.
Globally, the filter results in a 7% reduction in the number of observations assimilated for each
channel. Note that the areas outlined in pink match quite closely those areas in the CLW chart (Fig.
4b) that are characterized by persistent cloudiness. The surface rain rate chart (Fig 4c) indicates that
these areas are not precipitating much of the time, such that the precipitation screen would rarely be
active. Therefore, in the absence of the pseudo cloud filter, it may be concluded that many AMSU-B
observations are currently assimilated in cloudy, non-precipitating conditions in the CMC’s
operational analysis system.

In the validation of the 10-day forecasts for both experiments using RAOBS, small modifications
are mostly observed. In fact, for EXP1 the effect is almost entirely neutral. This is not completely
unexpected since SSM/I is assimilated only over oceans, and the majority of RAOBS are land-based.
For EXP2 the overall impact is small but almost entirely positive. The most dramatic effect is an
improvement in atmospheric humidity in the layer between 100 and 200 hPa over the SH, which
appears in the comparison of observations to the 6-hr forecasts (Figure 5). The reduction in bias
shown persists to day 6 of the forecasts. Other positive effects appear in the geopotential and wind
fields, but mostly after day 5 (not shown).

% cont re = conl. .
o AR iy
100~ ) - - - 33
150 asn ..‘:‘\“' { 158
200 96% - 1
i — ONTL i
+00) = EXP2 | &%
500 - -+ 1
700 1 w5
850 - - 88
975} { {5
1000 N . | ¥8

2 0 2 B 6 L

(degree}

Fig. 5: Validation of the first-guess dewpoint depression (ES, units=K) from EXP2 using
RAOBS for the SH (20° to 90°S). Bias is indicated by dashed lines and SD by solid lines.
Statistical significance greater than 90% is highlighted by green shading.

In the validation of forecasts using their own analyses, other interesting impacts are documented.
The improvements to the moisture field previously illustrated at high altitudes in the SH are also
evident in the plot of RMS for EXP2 as shown in Figure 6. Further positive effects are evident in
Figure 7, where the AC for the 850 hPa temperature field in the tropics is plotted. These scores are
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improved for EXP2, with a negligible change for EXP1. This plot, as well as many others not shown,
illustrate that in many instances, a greater positive impact is realized by the combination of adding
SSM/I and removing select AMSU data, rather than by adding SSM/I by itself. Most of these
improvements appear in tropical and SH regions.
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Fig. 6: RMS error of the 100 hPa dewpoint depression field in the SH plotted for EXP1 and
EXP2 against CNTL.

The only negative impact of note is the effect on the 850 hPa RMS for moisture in the SH (Fig.
8). In this case EXP1 once again shows virtually no change, and EXP2 shows a small increase in
RMS. This, however, is a small cost in relation to the gains made at other levels. Changes over other
areas of the globe and in other fields are negligible for both experiments.

It is evident that the gains made in the analyses by the addition of SSM/I data alone do not
translate into significant changes in the forecasts. This may be attributed to the presence of AMSU-B
data, which has been shown to provide a considerable amount of information on atmospheric moisture
to the CMC analysis and forecast systems (Chouinard and Hallé 2003, Anselmo and Deblonde 2003).
Recall, that the SSM/I mainly provides information on atmospheric moisture.

Finally, the validation of QPF for the two experiments using bias, threat, and equitable threat
scores over North America did not show any significant changes when compared to CNTL. This is
not surprising since none of the modifications directly affected the assimilation of observations over
land.
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Fig. 7: AC of the 850 hPa temperature field in the tropics plotted for EXP1 and EXP2

RMS

107

against CNTL.
Southern Hemisphere ES 850 hPa
1 101
8
6
4
2
— CNTL
- EXP1
| 0
24 48 72 96 120144 168 192 216 240 0

Forecasts

Southern Hemisphere ES 850 hPa

— CNTL
— EXP2
|
96 120 144 168 192 216 240
Forecasts

24 48 72

Fig. 8: Same as in Figure 6 except for 850 hPa.
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Conclusions

Brightness temperatures from three SSM/I polar orbiting instruments are successfully assimilated
in the CMC’s 3D-Var scheme over a one month period during the Northern Hemisphere (NH)
summer of 2003. In a second experiment, more strict filtering of AMSU data is tested concurrently
with the assimilation of SSM/I data. An important component of the enhanced filtering is the
application of a pseudo cloud filter to AMSU-B observations. Currently, AMSU-B data is assimilated
operationally at CMC after rejecting observations in areas of precipitation. However, observations in
cloudy, non-precipitating areas are not removed by the quality control measures in place today. It is
shown in the second experiment that the application of the cloud filter results in the rejection of these
observations. Therefore, it is highly recommended that this modification be considered for
implementation into operations.

The addition of SSM/I data alone gives improvements to the analysed IWV, SWS, and DPR fields
averaged over the month, however, the forecasts are not largely affected. The addition of SSM/I data
plus the removal of AMSU-A channel 3, and the rejection of cloudy observations for AMSU-B
channels 2, 3, 4, and 5 provides the same positive impact, but with additional improvements to the
forecasts. The most notable of which appears in atmospheric moisture above the SH tropopause. Other
less significant advances are evident in other fields and in other regions, mostly at longer forecast
times. One small deterioration is observed in the statistics for humidity at 850 hPa in the SH.

Although the additional assimilation of SSM/I data by itself does not greatly change the forecasts
generated by the global analysis system which already included AMSU data, its inclusion remains
highly beneficial to the system. One reason is that because the observations from the two independent
monitoring systems are complementary, a failure of any of the instruments assimilated would not have
as large a negative impact on operational products. As well, an increase in the number and in the
global coverage of satellite observations ingested should decrease the chances of missing extreme
weather events.

Future Work

The same configurations used to generate EXP1 and EXP2 will be applied to a NH winter month
to verify whether similar results are obtained. Following this work, simulations with the now
operational 4D-Var global analysis system will be executed over two 2-month periods, one in NH
summer and another in NH winter. A similar vigorous analysis of the output will subsequently be
applied.
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