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ABSTRACT 
The high spectral resolution sounding suite instruments on EOS Aqua are expected 

to provide estimated atmospheric profiles with higher accuracy and better vertical 
resolution. To validate and test it’s performance with it’s orbital measurements, 
temperature profiles at 101 pressure levels, up to 0.005 hPa, with 1km vertical 
resolution at troposphere, were retrieved on different types of terrain with different 
spectral bands in the middle latitude area by using a three-layered feed-forward neural 
networks with back-propagation algorithm. Results show that the Qinghai-Tibet Plateau 
has a measurable impact on the retrieval accuracy which is corresponding to the spectral 
bands used in performing retrievals. A promising approach to the elimination of this 
effect is to apply additional predictors which are non-satellite observed (e.g. surface 
altitude). 
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1 Introduction 

With the development of numerical weather prediction and four-dimensional data 
assimilation, the accuracy of model-derived atmospheric temperature fields is 
comparable to or better than those obtained from existing operational satellite 
soundings (e.g., HIRS). The retrieval vertical resolution is limited mainly by the 
broadness of the contribution functions (i.e., the weighting function multiplied by the 
Planck function) of current instruments. When the contribution functions are expanded, 
emitted energy reaching the satellite in each channel will have components originating 
from a thick layer of the atmosphere, thereby making the discrimination of fine-scale 
vertical details practically impossible. This problem is exacerbated by the limited 
number of HIRS channels. Furthermore, because of the broad width of the contribution 
functions and the difficulties in eliminating cloud contamination effects, as well as 
effects from the surface emissivity, O3, H2O, and other minor constituents, the RMS 
errors in the retrieved temperature profiles remain high. Until the launch of Aqua in 
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2002, the advanced sounding suite system, especially the advanced hyperspectral IR 
instrument AIRS made this deficiency eliminable (Jun Li 1994). 

AIRS (Atmospheric Infrared Sounder) on the EOS Aqua spacecraft that launched 
on 4 May 2002 from Vandenburg Air Force Base, California, into a 705km altitude 
sun-synchronous orbit, is an infrared spectrometer/radiometer which employs two 
multi-aperture slit and is pupil-imaging, with spectral coverage from 3.74 to 4.61μm, 
from 6.20 to 8.22μm, and from 8.8 to 15.4μm, with nominal spectral resolution 

1200/ =Δλλ . The spectrum is sampled twice per spectral resolution element for a 
total of 2378 spectral samples. These large numbers of channels provide sharpen 
weighting functions, and also permit selection of sounding channels not contaminated 
by water vapor lines or by emission from other active gases. The AIRS as a key facility 
instrument on the EOS Aqua satellite, working together with AMSU (Advanced 
Microwave Sounding Unit) and HSB (Humidity Sounder for Brazil), forms a 
complementary sounding system for NASA’s Earth Observing System (Aumann et al. 
2003). 

The AMSU-A is primarily a temperature sounder co-aligned with the AIRS 
instrument, which measures radiant energy with 15 channels between 23 and 89 GHz 
provides means to independently account for clouds in the AIRS Field of View and 
corrects the infrared measurements for the effects of clouds so as to resulting in more 
accurate temperature and humidity retrievals. The HSB is 4 moist sounding channel 
version of AMSU-B but has footprints of the same spatial resolution as AIRS IR 
footprints. It detects radiances in the range of 150 to 183.31 GHz to provide the 
atmospheric information needed to correct infrared measurements (e.g., from AIRS) 
for the effects of clouds and to determine global humidity profiles in 2-km thick layers 
in the lower atmosphere (troposphere) (Susskind et al. 1998 and Susskind et al. 2003).  

Before and after the AIRS had been launched into its orbit, algorithms and 
monographs for atmospheric profiles retrieval have been published by various 
researchers, such as Motteler et al. 1995, Susskind et al. 1998, Kuligowski and Barros, 
2001, Cabrera-Mercader and Staelin 1995, Goldberg et al. 2003, Susskind et al. 2003, 
Chaohua et al. 2004,and etc. 

Spectral bands were fine-scaled for AIRS instrument to achieve higher accuracy 
and better vertical resolution in estimated profiles. This means larger amount of 
channels data have to be dealt with. In the physical retrieval algorithms, Forward 
Models (FMs) are the physical kernel to invert atmospheric parameters numerically. In 
the data assimilation systems, they are used to connect satellite measurements with 
numerical models. Both numerical inversion and direct assimilation iteratively require 
FMs and their Jacobeans to calculate many times for each satellite measurement. Thus, 
the retrieval process becomes very time consuming, sometimes prohibitively 
expensive for operational applications (Strow et al. 2003). For such applications it is 
essential to have fast and accurate versions of FMs. Neural networks enable us to 
construct such fast and accurate FMs 

Neural networks technique is a very promising mathematical tool for modeling 
complicated nonlinear relationships (Attali et al. 1997, Chen and Chen 1995, Hornik 
1991, Deming et al. 2003) and is also an appropriate and efficient tool for solving 
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forward and inverse problems in remote sensing and for developing fast and accurate 
forward models and accurate and robust retrieval algorithms. (Kuligowski and Barros 
2001, Aires et al. 2002, Cronford et al. 2001, Gottsche and Olesen 2002). Various 
neural inversion techniques have been developed, such as the “iterative inversion” 
(Kindermann and Linden 1990), the “distal learning” (Jordan and Rumelhart 1992), 
and etc. 
 In this paper, a three-layered feed-forward neural network similar to that used by 
H. E. Motteler et al. in 1995, is applied to estimate atmospheric temperature profiles by 
using AQUA/AIRS, AMSU and HSB real data.  
 
2 The neural networks inversion approach 

The neural networks used in the tests as a atmospheric parameters retrieval system 
consists of a three-layered Feed-forward networks with the back-propagation 
algorithm, as is shown in Fig. 1. It can be represented as a vector valued function:  

F (p) = w3F2 (w2F1 (w1p+b1) +b2) +b3, 
where F1 and F2 map vectors to vectors by applying a transfer function to each vector 
component. The mapping Fi (i=1, 2, 3) is referred to as a layer, with the weight 
matrices representing connections between layers. The hyperbolic tangent as a transfer 
functions in the two hidden layers, and a linear function in the output layer. The vector 
p is the input to the network, the wi (i=1, 2, 3) are weight matrices and bi (i=1, 2, 3) are 
bias vectors.  

 
Fig.1 The three-layered feed-forward neural networks employed in the experiments. 

 
The term back-propagation refers to the manner in which the gradient is computed for 
nonlinear multilayer networks. Standard back-propagation is a gradient descent 
algorithm, in which the network weights are moved along the negative of the gradient 
of the performance function. There are a number of variations on the basic algorithm 
that are based on other standard optimization techniques, such as conjugate gradient 
and Newton methods. The neurons in the two hidden layers are nonlinear hyperbolic 
tangent activation functions (the sigmoid function) and the output neurons are linear. 
The input to the network is a vector of PCs (the Principal Components) of the observed 
radiances obtained from the AIRS, AMSU and HSB measurements (Huang 2001). For 
each input vector the system produce estimates of atmospheric temperature at pressure 
levels ranging from 0.005 hPa to 1010 hPa. 
 The procedure of retrieval can be divided into several steps. The first step is to 
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divide the data up into training, validation and test subsets. One fourth of the data were 
taken as the validation set, one fourth as the test set and one half as the training set. The 
sets were picked as equally spaced points throughout the original data. Then the inputs 
and targets of the training set were normalized so that they will have zero mean and 
unity standard deviation. The next step is to perform a principal component analysis - 
PCA. PCA technique has three effects: it orthogonalizes the components of the input 
vectors (so that they are uncorrelated with each other); it orders the resulting 
orthogonal components (principal components) so that those with the largest variation 
come first; and it eliminates those components that contribute the least to the variation 
in the data set. 

PC index  
Fig. 2 PCs on complicated terrain. (a) The percentage of the total variance in the atmospheric temperature 

profile explained by each principal component in explained. (b) The same as (a) but for satellite observed 

brightness temperature. 

 
Fig.3 PCs on flat terrain. (a) and (b) The same as in figure 2, but for flat terrain. 

Figure 2 and Figure 3 indicated the percentage of the total variance in the 
observations explained by each principal component in explained. Those principal 
components have been conservatively retained which account for 99.9998 of the 
variation in the data set. This means that those principal components that contribute 
less than 0.0002% to the total variation in the data set will be eliminated. This 
procedure reduces the size of the input vectors from 2127 to 230 (There are 270 bad 
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channels among 2378 AIRS channels. These bad channels are eliminated. And 15 
AMSU channels and 4 HSB channels are involved in. So we use totally 2127 channels). 
The third step is to create a network and train it. The last step is to perform some 
analysis of the network response. The entire data set were input through the network 
(training, validation and test) and a linear regression was performed between the 
network outputs and the corresponding targets. With all test data set, the root mean 
square errors (RMSE) were also computed between the retrieved profiles and the 
real-time ECMWF analyzing profiles.  
 
3. Training and Retrieving 

Dataset we used in the study include totally 11,658 cloud-free samples were derived from 10 
granules which numbered as 043, 044, 045, 060, 061, 076, 077, 078, 093, 094, at time 04:17.26s, 
04:23.26s, 04:29.26s, 05:59.26s, 06:5.26s, 07:35.26s, 07:41.26s, 07:47.26s, 09:17.26s, 09:23.26s 
(UTC), on 6 September 2002. Each sample was co-located with the real-time ECMWF analysis 
profile at 06 (UTC). These samples and profiles were arbitrarily clustered in two classes: (1) 
on complicated terrain (with Qinghai-Tibet and sea surface involved) located at 
latitude between and ; (2) on plain terrain located at latitude between 

 and . And each class presented to the networks was divided up into two 
subsets for training and test, which were picked as equally spaced points throughout the original 
dataset.  

N°20 N°40
N°40 N°60

Figure 4 shows the spatial distribution of the observations belonging to each class 
with respect to the entire ensemble. And figure 5 shows the surface altitude distribution 
in each sample subset, (a) for the complicated terrain, (b) for the flat terrain. 

 
Fig. 4 Sampling measurements coverage (Ascending orbit) 

 
As it was known, the training for a feed-forward network with back-propagation 

method is a computationally intensive process. Especially for a non-trivial one, it has 
hundreds of neurons inside so as to adapt the input vectors to the target vectors and the 
target vectors also have hundreds of components in each. A conventional process for 
neural networks retrieval system usually has one input component for each selected 
instrument channel and one output component for each pressure level. Inputs are 
brightness temperatures and output is a temperature or humidity profile. 
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Fig. 5 Surface altitude distribution. (a) the complicated terrain, (b) on the flat terrain. 

 
This design is very time-consuming to train in case for high spectral resolution 

satellite data and high vertical resolution profile. A typical training process for 
temperature retrieval is as shown in figure 3. The training process stopped at 5,000 
epochs and the training RMS error goal was not met. Motteler et al. trained for 20,000 
to 100,000 epochs for smaller RMS error (Motteler et al. 1995). Hence, an improved 
design is made in our retrieval system.  
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Fig. 6  A typical conventional training process of neural networks for 

temperature profile retrieval.  

In the training procedures, brightness temperatures (training subset, pretreated by 
using PCA) and one single layer of temperature as target are presented to the net at a 
time. Due to only one component in the target vector, the size of networks could be 
very small. Consequently, the net should cost less training epochs to fit and less time 
for each single epoch as well. In retrieving phase following the training phase, one 
single layer of temperature would be output. When temperature at the first pressure 
level is retrieved, the next layer adjacent to the first layer then begins to perform. At 
this phase, we use the prior weight matrix to initialize the network. Because the 
temperatures at adjacent pressure layers should have less difference on value, the 
weight and bias matrix should need less adjustment and the net should converge to the 
target more quickly. This process somewhat looks like in the physical retrieval 
algorithm with a “good first guess”. In our tests, this method performed very well and 
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saved a great quantity of time. And the retrieved profiles look more smoothly. 
 
4. Results 

Results are summarized in table 1 and in figure 7 ~ 9. 
Spectral coverage sensitivity test: table 1 shows the overall retrieval RMS errors in 

different terrain by using channels within long wave spectral range (L: 8.8 - 15.4μm), 
within middle wave range (M: 6.20 - 8.22μm) and within short wave range (S: 3.74 - 
4.61μm) and their combinations.  

Table 1�Overall RMS errors of spectral coverage 
Spectral coverage 20~40°N 40~60°N 

L 1.0220  0.8122 
M 0.9524 0.7635 
S 1.0406 0.8519 

L+M 0.9650 0.8191 
L+S 0.9864 0.8299 
M+S 0.9829 0.8107 

L+M+S 0.9687 0.8080 
AIRS+AMSU+HSB 0.9795 0.8074 

Adding additional predictors 0.8990  0.7510 

 
The middle wave channels perform best, while the short wave channels do the worst, 
both on the complicated and flat terrain. Using all channels does not yield better result. 
Microwave channels help improvement in temperature retrieval accuracy within the 
flat terrain, but just the reverse on the complicated terrain. By adding the surface 
altitude as an additional predictor, the RMS error decrease. The overall error in the 
region ~  is 0.8990 less than 0.9795, and in ~  is 0.7510 less 
than 0.8074. 

N°20 N°40 N°40 N°60

Figure 7 and figure 8 demonstrate RMS errors of temperature retrieval at latitude 
between and , and between  and  respectively. The dotted 
line represents the retrieved RMS temperature errors by using IR channels only (AIRS) 
and the solid is similar but with microwave channels (AMSU & HSB) merged in.  

N°20 N°40 N°40 N°60

In comparison with figure 7 and figure 8, we see that retrievals performance much 
better at flat terrain than at complicated surface and microwave channels help to 
improve accuracy in temperature retrievals at the near surface pressure levels at 
complicated terrain more obviously than at plain surface.  

To confirm if these differences really arose from the Qinghai-Tibet plateau, we 
eliminated the sample profiles of Qinghai-Tibet from the dataset. The results are 
summarized in figure 9, in which the solid line indicated the RMS error with the 
Plateau eliminated. In the comparison of two RMS lines shows the improvement in 
retrieval accuracy overall non-trivial. In other words, results have posed a major 
challenge to achieve the nominal accuracy of 1K/1km for temperature retrieval in high 
spectral resolution soundings: the Qinghai-Tibet will be a major obstacle. 
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Fig.7 complicated terrain   Fig.8 flat terrain    Fig.9 Qinghai-Tibet eliminated 

 
5. Conclusions  

1) Different spectral bands have a variety of sensitivity to the topography. The short 
wave range spectral band is of the most sensitive, while the medium wave channels are 
of less sensitive. To reduce the impact of terrain, it is necessary to select proper 
channels to be used in retrieval. 

2) Using microwave channels help the improvement of retrieval accuracy at the 
lower troposphere, but do worse at the upper troposphere, as a result, the overall RMS 
errors increase. 

3) Adding additional predictors, such as surface altitude, can largely help in the 
improvement of the retrieval accuracy at the complicated terrain. 

4) Retrieval errors near the tropopause are still too large and no method was found 
to get the situation improved. Using GPS data may be a prospective approach (Borbas et 
al. 2003).  

5) High spectral resolution instruments are capable of providing a way 
prospectively to obtain high vertical resolution retrieved profiles. The greatest 
difference between actual retrievals and simulated retrievals was the RMS errors at the 
tropopause, and at pressure levels near the surface, where large errors stick out 
obviously for actual retrievals.  

6) Training for neural networks is a computationally intensive process, but applying 
a trained net is very fast. Results showed in this paper suggest neural networks are 
capable of providing a way to get a reasonably accurate retrieval system on-line very 
quickly, and might also be useful in providing a good “first guess” for an iterative 
physical retrieval system to obtain better accuracy. The “layer-by-layer” method for 
profile retrieval proposed in this paper provide an efficient way to training a net and to 
retrieving profiles, especially for the retrieval of a high vertical resolution profile with 
fine-scale more than one hundred pressure levels. But some people consider it is not an 
acceptable retrieval strategy. Because retrieving one temperature at a time does not use 
the fact that the profiles have regularities. This means that it has irregular, noisy 
retrieved profiles since no constrains of regularity is used (in the form of covariance 
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matrices generally). So, it is not optimal at all. But this method performed very well 
and saved a great quantity of time in our test. I can not tell the reason. 
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