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Abstract 
Tropospheric wind is a top priority NPOESS EDR that can be retrieved by tracking high spatial resolution 
altitude-resolved water vapor sounding features in imagery provided by a humidity imaging sounder. A 
Wedge-filter Imaging Spectrometer (WIS) can provide the required humidity imagery and has already 
been studied for application in geostationary orbit by Puschell, Huang and Woolf. The Wind Imaging 
Spectrometer and Humidity-sounder (WISH) described here would incorporate the same technology and 
could be developed in time for flight on the NPOESS C2 spacecraft. WISH would take advantage of 
payload capacity available for P3I demonstrations in NPOESS and would serve as a risk reduction and 
technology demonstration for future NOAA environmental satellite missions.  
 

Introduction 
Tropospheric wind is among the top priority NPOESS Pre-Planned Product Improvement (P3I) EDR 
candidates. This EDR can be retrieved by tracking high spatial resolution altitude-resolved water vapor 
sounding features in imagery at appropriate temporal sampling provided by a humidity imaging sounder. 
A Wedge-filter Imaging Spectrometer (WIS) can provide the required humidity imagery and has already 
been studied for application in geostationary orbit by Puschell, Huang and Woolf (2001). The 
geostationary WIS would use spatially variable wedge filter spectrometers to collect earth radiance with 
~2 km resolution over a broad infrared (710-2900 cm-1) spectral region at 1% spectral resolution. The 
resulting sensor is a compact, lightweight, and rugged imaging sounder with better sensitivity, spectral 
resolution, spatial resolution and full disk coverage time than the current multispectral GOES imager. The 
Wind Imaging Spectrometer and Humidity-sounder (WISH) could incorporate the same Raytheon WIS 
technology and is suitable for flight on the NPOESS C2 or C3 spacecraft. WISH would take advantage of 
the payload capacity available for P3I demonstrations in NPOESS and would serve as a risk reduction and 
technology demonstration for future NOAA environmental satellite missions.  
 

Wedge imaging spectrometers 
WIS technology has been developed and patented at Raytheon since 1990.  As shown in Figure 1, the 
WIS is based on a hybridized sensor chip assembly (SCA) that combines a multi-layer “wedge” 
interference filter and an area detector array with a readout circuit. The “spectral” dimension is parallel to 
the filter taper (exaggerated in the illustration), with the thin edge transmitting the shortest wavelength. 
Blocking filters reduce out-of-band response across the filter.  Jeter, et al (1996) built and demonstrated 
aircraft-based visible, near-infrared (VNIR) and short-wave infrared (SWIR) WIS sensors.  Lencioni and 
Hearn (1996) discussed an advanced GOES imager concept that included a visible/near-infrared WIS.  
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Puschell, Huang and Woolf (2001) described a Geostationary Wedge Imaging Sounder (GWIS) concept 
for the 3.5-14 μm spectral region.   

Figure 1.  Wedge Imaging Spectrometer concept. 

 
A principal advantage of the WIS over alternative approaches is its relative simplicity, as shown in Figure 
2. The WIS does not require the complex aft optics used in other spectrometers.  This feature offers 
several benefits including a compact, easily ruggedized instrument design and an uncomplicated layout 
that result in minimal sensor integration and test time, thereby reducing cost and delivery time with 
respect to other approaches. 

 
Figure 2.  The Wedge Spectrometer offers a simple optical layout compared with other 

approaches 
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Long Wave Infrared (LWIR) WIS Sensor Chip Assembly 
Recently, Raytheon extended WIS technology to the LWIR (8.0-11.8 µm) by building a WIS SCA using 
PV HgCdTe detectors (Figure 3).  
 
This 320 (spatial dimension) by 210 (spectral dimension) SCA uses 40 µm detectors to cover the 8.0-
11.8 µm spectral region with ~1.5% point bandwidth and optical transmittance of ~80% (Figure 4). The 
210 spectral axis elements can be processed to provide roughly 27 non-overlapping bands or as many as 
210 overlapping spectral channels.  This SCA is designed for use at cryogenic operating temperatures.  
Therefore, it can provide the high radiometric sensitivity needed to enable its use in infrared hyperspectral 
imaging from space.  
 
In addition to this LWIR SCA and the VNIR and SWIR sensors mentioned above, Raytheon has also 
applied wedge filter technology in the midwave infrared (MWIR) region.  High performance wedge filter 
spectrometers can be built for wavelengths out to 14 μm and beyond and with point bandwidths 
substantially below 1%.   This combination of performance capabilities makes WIS technology a 
promising candidate for space-based imaging and sounding. 

 

 
Figure 3.  Hybridized WIS SCA hardware. 
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Spectral Range: 8-11.8 μm
Array Size

Spatial: 320
Spectral: 210

Detector Size:  40 μm
Orthogonal Channels: 27
Point Bandwidth: 1.5%
Tranmission: ~80%

Spectral Range: 8-11.8 μm
Array Size

Spatial: 320
Spectral: 210

Detector Size:  40 μm
Orthogonal Channels: 27
Point Bandwidth: 1.5%
Tranmission: ~80%

Figure 4.  Characteristics of a recent Raytheon LWIR wedge filter. 

Wind Imaging Spectrometer and Humidity-sounder (WISH) Concept 
WISH consists of two spectrometers that provide data for retrieving wind vectors at different altitudes in 
the troposphere by observing Earth in the 6.7-μm water vapor band.  The method for retrieving wind 
vectors from WISH data is described by Huang, et al. (2005).  The WISH system retrieves wind vectors 
by analyzing movement of water vapor features between observations of the same Earth region made with 
the two spectrometers.  As shown in Figure 5, one of the WISH spectrometers is pointed 50 deg ahead of 
nadir along track while the second spectrometer is pointed 50 deg aft of nadir along track.  Approximate 
time between measurements of the same Earth region is about 5.3 min.  During that time, a water vapor 
feature appears to move ~8 pixels for a 20 mph wind.   
 
WISH measures emitted Earth radiance in 210 spectral channels that cover the 5.7 – 8.7 μm spectral 
region with 10 cm-1 spectral resolution.  Spatial resolution is 290 m from the NPOESS satellite altitude of 
833 km.  This spatial resolution enables accurate water vapor measurements across a relatively short 
baseline in time.  WISH uses actively cooled PV HgCdTe detector arrays to achieve radiometric 
sensitivity better than 0.1 K across the entire spectral region even for a 220 K scene temperature.   
 
WISH is compatible with accommodation aboard any of the NPOESS satellite configurations, as shown 
by comparing preliminary WISH characteristics with a recent assessment of NPOESS system resources 
available for Pre-Planned Product Improvements (P3I) described by Naegeli et al. (2004). Figure 6 shows 
how the approximate WISH nadir deck footprint compares with deck area currently available in the 
NPOESS 1330 configuration. Table 1 summarizes how power, mass and data rate expected to be 
available for a NPOESS P3I sensor compares with preliminary WISH characteristics. Based on this initial 
assessment of sensor volume, mass, power and footprint size, WISH can be accommodated within any of 
the NPOESS configurations. However, the data rate required for continuous data collection and 
transmission is about 36 Mbps, which exceeds the available data rate by about a factor of ten.  The 
simplest approach to reduce data rate for this technology risk reduction demonstration instrument is to not 
transmit all data to the ground, such as by selecting only part of the full swath for continuous transmission 
to Earth or by transmitting full swaths only from selected regions.  
 
WISH is a low risk and relatively low cost approach for making tropospheric wind measurements. It is a 
relatively small, low impact instrument that is based entirely on existing technology.  Additional work is 
needed to define better the expected absolute radiometric accuracy of WISH, to determine impact of 
spectral calibration and spacecraft pointing knowledge on wind vector determination and to optimize the 
design against a more detailed set of mission and sensor requirements.   
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Summary 
A Wind Imaging Spectrometer and Humidity-sounder (WISH) that incorporates recent MWIR/LWIR 
Raytheon technology developments offers a practical, low risk approach for measuring water vapor winds 
using spacecraft capacity available in NPOESS.  Due to its relatively high spatial resolution (290 m) 
compared with previous water vapor sounder concepts, WISH can measure water vapor winds accurately 
with only a ~5 minute measurement baseline.  Additional work is needed to optimize the WISH sensor 
design and assess its radiometric and spectral calibration performance.   
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Table 1. NPOESS Satellite Power/Mass/Data Rate Budget Status (July 2004) compared with 
preliminary WISH characteristics. 

NPOESS Orbit 2130 1330 1730 WISH 
P3I Sensor Power Allocation (W) 326 326 326 <75  
Satellite Power Margin (W) 1,407 234 1,013  
P3I Sensor Mass Allocation (kg) 365 365 365 <80  
Satellite Mass Margin (kg) 609 189 216  
P3I Data Rate 1394 (Mbps) 3.2 3.2 3.2 36 (continuous) 
P3I Data Rate 1553 (Kbps) 200 200 200  
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Figure 5.  WISH consists of two wedge spectrometers that measure wind by 
observing the same Earth region twice with ~5 minute measurement separation in 

the 6.7 micron H2O band from NPOESS. 
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Figure 6. NPOESS 1330 satellite configuration. 
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