A Joint Temperature, Humidity, Ozone, and SST Retrieval Processing System for IASI Sensor Data: Properties and Retrieval Performance Analysis

M. Schwaerz G. Kirchengast

ARSCIiSys@WegCenter and IGAM, University of Graz, Austria

14th International TOVS Study Conference, May 24 – 31, 2005

- METOP IASI
 - METOP
 - IASI Infrared Atmospheric Sounding Interferometer

- METOP IASI
 - METOP
 - IASI Infrared Atmospheric Sounding Interferometer
- Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval
- Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval
- Summary and Outlook

- METOP IASI
 - METOP
 - IASI Infrared Atmospheric Sounding Interferometer
- Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval
- Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval
- Summary and Outlook

- METOP IASI
 - METOP
 - IASI Infrared Atmospheric Sounding Interferometer
- Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval
- Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval
- Summary and Outlook

- METOP IASI
 - METOP
 - IASI Infrared Atmospheric Sounding Interferometer
- 2 Forward Model and Retrieva
 - The forward model RTIASI
 - The Retrieval
- Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval
- Summary and Outlook

METOP configuration

METOP specifications

o size:

17.6 m \times 6.7 m \times 5.4 m

mass: 4244 kg

power: 2010 W (eclipse)

orbit

inclination: 98.7°

■ ALTITUDE: ~830 km

- sun-sync. orbit (9:30 local time)
- >14 revolutions/day
- repeat cycle: 29 days –
 412 orbits

METOP configuration

METOP specifications

size:

17.6 m \times 6.7 m \times 5.4 m

mass: 4244 kg

power: 2010 W (eclipse)

orbit

inclination: 98.7°

■ ALTITUDE: ~830 km

- sun-sync. orbit (9:30 local time)
- >14 revolutions/day
- repeat cycle: 29 days –
 412 orbits

instruments on board of METOP

Source: http://www.space-technology.com/

- A/DCS
- SARP-3
- SARR
- SEM

atmospheric instruments

- IASI
- AMSU A1, A2
- ASCAT
- AVHRR
- GOME-2
- GRAS
- HIRS
- MHS

instruments on board of METOP

Source: http://www.space-technology.com/

additional instruments

- A/DCS
- SARP-3
- SARR
- SEM

atmospheric instruments

- IASI
- AMSU A1, A2
- ASCAT
- AVHRR
- GOME-2
- GRAS
- HIRS
- MHS

IASI – infrared atmospheric sounding interferometer

IASI characteristics

scan type: step and dwell

scan rate: 8 spixel/views: 4

views/scan: 30

• IFOV: 3.33°(48 km at nadir)

swath: ±48.3°(±1026 km)

lifetime: 5 years

power: 200 W

mass: 210 kg

• size: 1.2 m \times 1.1 m \times 1.1 m

オロアオロアアオミアオミア モ(= *)べじ

IASI - measurement specifications

(a) radiances and (b) brightness temperatures of IASI simulated by RTIASI for a us.std.midlatitude summer atmosphere.

measurement specifications

- spectral range: 645-2760 cm⁻¹ 15.5-3.6 μm
- spectral res.: 0.35 0.5 cm⁻¹
- 8461 channels separated into 3 bands
- radiometric res.: 0.25 0.5 K
- water vapor: 1250 2000 cm⁻¹
- CO₂: near 645 and 2325 cm⁻¹
- additional absorption of O₃, CH₄, N₂O, CO, SO₂

- 1 METOP IASI
 - METOP
 - IASI Infrared Atmospheric Sounding Interferometer
- Porward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval
- Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieva
- 4 Summary and Outlook

the forward model RTIASI

RTIASI - an overview

- simulation of the IASI measurements at 43 fixed pressure levels between 0.1 and 1013.25 hPa
- calculation of optical depth's via a regression scheme
- calculation of level to space transmittances
- solution of the radiative transfer equation to estimate
- brightness temperatures T_B (or radiances, respectively).
- tangent linear and adjoint model to calculate jacobians for **T**, **q**, **O**₃, and SST $\frac{\partial \mathbf{T}_B}{\partial \mathbf{T}}$, $\frac{\partial \mathbf{T}_B}{\partial \mathbf{q}}$, $\frac{\partial \mathbf{T}_B}{\partial \mathbf{O}_3}$, and $\frac{\partial \mathbf{T}_B}{\partial \mathrm{SST}}$

connecting the forward model and the retrieval

the forward model reads

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\epsilon} \tag{1}$$

- y, x: measurement and state vector
- f: forward model operator jacobian matrix K times x
- \bullet ϵ : measurement error vector

the direct inverse reads

$$\mathbf{x}_{retr} = \mathbf{K}^{-g} \mathbf{y}$$
 (2)

- ill-conditioned problem
- over determined for m>n

<ロ > ← 同 > ← 巨 > ← 巨 > 三 目 = り Q ()

Schwaerz, Kirchengast ITSC 14 May 2005 Beijing, China

the retrieval

optimal estimation algorithm

- incorporates sensibly a priori knowledge
- statistically optimal fusion of unbiased measurements and a priori data

linearized iterative optimal estimation scheme

$$\mathbf{x}_{i+1} = \mathbf{x}_{ap} + \mathbf{S}_i \mathbf{K}_i^T \mathbf{S}_{\epsilon}^{-1} \left[(\mathbf{y} - \mathbf{y}_i) + \mathbf{K}_i (\mathbf{x}_i - \mathbf{x}_{ap}) \right]$$
(3)

with:
$$\mathbf{S}_i = \left[\mathbf{S}_{ap}^{-1} + \mathbf{K}_i^T \mathbf{S}_{\epsilon}^{-1} \mathbf{K}_i\right]^{-1}$$
. (4)

- S_i , S_{ϵ} , S_{ap} : retrieval, measurement, and *a priori* error covariance matrix
- $\mathbf{x}_{i,i+1}$, \mathbf{x}_{ap} : iterated (iteration index i) and a priori profile

Schwaerz, Kirchengast ITSC 14 May 2005 Beijing, China

the a priori error covariance matrix

a priori error covariance matrices for temperature, humidity and ozone.

off diagonal elements

- exponential drop off
- correlation length:

Γ 6 km

q 3 km

O₃ 10 km

the measurement error covariance matrix

diagonal elements

- IASI level 1c noise values
- adapted to the actual brightness temperature
- +0.2 K forward model error

off diagonal elements

correlation of the three nearest neighbor channels:

- 1 0.75
- 2 0.25
- 3 0.04

the measurement error covariance matrix

diagonal elements

- IASI level 1c noise values
- adapted to the actual brightness temperature
- +0.2 K forward model error

off diagonal elements

correlation of the three nearest neighbor channels:

1 0.75

2 0.25

3 0.04

- 1 METOP IASI
 - METOP
 - IASI Infrared Atmospheric Sounding Interferometer
- Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval
- Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval
- Summary and Outlook

the simulation of the measurement vector

- calculation with the fast radiative transfer model RTIASI
- superposition of radiometric noise $\Delta \mathbf{y}$, consistent with \mathbf{S}_{ϵ} , according to IASI level 1c noise to get quasi realistic data

channel selection

removal of channel regions

 $> 2500 \text{ cm}^{-1}$: sun, inst.noise 1220 - 1370 cm $^{-1}$: N₂O, CH₄, SO₂ $\Longrightarrow \sim$ 6200 channels $2085 - 2200 \text{ cm}^{-1}$: CO, N₂O

(5)

information content theory

$$H_i = \frac{1}{2} \log_2 \left| \hat{\mathbf{S}}_i^{-1} \hat{\mathbf{S}}_{i-1} \right|,$$
 (6)

maximum sensitivity approach

the simulation region

true fields

a priori minus true – 24h forecast

a priori minus true – 24h forecast/ error data

a priori minus true – true perturbed

a priori minus true – true perturbed/ error data

temperature profiles – error analysis

humidity profiles – error analysis

ozone profiles – error analysis

SST – error analysis

single parameter retrieval – temperature

single parameter retrieval – humidity

single parameter retrieval – SST

channel selection – a comparison

numerical efficiency

- a) IC ~ 300 chan.
- b) IC ~ 900 chan.
- c) IC $-\sim$ 1800 chan.
- d) MS \sim 300 chan.
- e) MS \sim 900 chan.
- f) MS \sim 1800 chan.

numerical efficiency

set	IC	MS
300	1.00	0.98
887	3.74	4.25
1808	11.25	13.13

- METOP IASI
 - METOP
 - IASI Infrared Atmospheric Sounding Interferometer
- Forward Model and Retrieval
 - The forward model RTIASI
 - The Retrieval
- Results
 - Retrieval Setup and Channel Selection
 - Results of the Joint Retrieval
- Summary and Outlook

Summary

Summary (1)

- IASI is the most advanced infrared sounder to be launched in the near future
- the IC based channel reduction makes the retrieval efficient − reduction from >8400 to ~3.5% (~300)
- retrieval accuracy:

temperature: 1 K at 1-3 km humidity: 15-20% at 1-3 km

<u>SST:</u> ~0.1 K

ozone: improvements in the stratosphere in heights with high concentration of O₃

Summary

Summary (2)

- a priori data exhibit important influence from the tropopause upwards
- the joint algorithm shows an clearly improved performance compared to more specific retrieval setups
- temperature, humidity, and SST results are quite independent from the initial guess of ozone (a few 10% uncertainty level)

Outlook

Outlook

- Improvements:
 - statistical model of the a priori error covariance matrices,
 e.g., direct use of the relevant ECMWF a priori covariance matrices for T and q
 - usage of the newest forward model RTIASI
- next steps:
 - application of the algorithm to AIRS data is planned

METOP – IASI Forward Model and Retrieval Results Summary and Outlook

Thank You!

- 6 Anhang
 - EM-Spectrum

measured spectrum

Source: http://www.giangrandi.ch/optics/ spectrum/spectrum.shtml

GOME-2 AVHRR HIRS IASI AMSU-A1,A2 ASCAT GRAS MHS

◆ Return

International TOVS Study Conference, 14th, ITSC-14, Beijing, China, 25-31 May 2005. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2005.