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Abstract 
The Center for Weather Forecasting and Climate Studies (CPTEC) is responsible for producing 
weather maps for the numerical prediction in Brazil. One key issue for numerical prediction is related 
to provide good estimation of the initial conditions for the atmospheric simulation code. One 
procedure consists of retrieving vertical atmospheric profiles for temperature and moisture profiles. 
The CPTEC operationally uses the Inversion Coupled with Imager (ICI-3) software in dynamic mode 
(CPTEC analysis) with the ATOVS/NOAA-16 system to supply such vertical profiles. However, 
CPTEC is also investigating new retrieval schemes that that have been developed at INPE. One of 
these schemes retrieves the profiles by means of a generalized least square problem, where a new 
regularization operator is employed. Such regularization operator is based on maximum entropy of 
second order. An Artificial Neural Network (ANN) is another scheme for retrieving the atmospheric 
profiles. The ANN is the Multi-layer Perceptron, with back propagation learning strategy. The goal 
here is to compare these different methods, focusing on the operational procedures. The comparison is 
carried out by using two databases: TIGR and NESDISPR. About 500 profiles from the TIGR and 400 
profiles from the NESDISPR, and associated radiances, are selected for testing the three strategies. 
The average error over profiles is used to perform the comparison among the inversion methodologies, 
and these analyses will be shown here.  
 
Introduction 
Vertical profiles of the temperature and water vapor measurements are fundamental for the 
meteorological process of the atmosphere. The monitoring of these quantities required observational 
stations all over the world, however logistics and economic problems lead to a lack of sensors in many 
parts of the planet. Thus, retrieving temperature and humidity profiles from satellite radiance data 
became very important for weather analyses and data assimilation processes in numerical weather 
predictions models. 

Satellite measured radiance data may be interpreted by the inversion of the Radiative Transfer 
Equation (RTE) that relates the measured radiation in different frequencies to the energy from 
different atmospheric regions. The degree of indetermination is associated with the spectral resolution 
and the number of spectral channels, and this solution is usually very unstable due to noise in the 
measuring processes (Rodgers 1976, Twomey 1977). Several methodologies and models have been 
developed attempting at improving data processing for information extraction from satellite radiance 
data (Chahine 1970, Liou 1982, Smith et al. 1985). 

The atmospheric temperature estimation is a classical inverse problem. In order to deal with 
the ill-posed characteristic of the inverse problem, regularized solutions (Tikhonov and Arsenin 1977, 
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Ramos and Campos Velho, 1996; Campos Velho and Ramos, 1997; Ramos et al., 1999) and also 
regularized iterative solutions (Alifanov, 1974; Jarny et al.; 1991; Chiwiacowsky and Campos Velho, 
2003) have been proposed.  Recently, artificial neural networks have also been employed for solving 
inverse problems (Aires et al., 2002; Atalla and Inman, 1998; Hidalgo and Gómez-Treviño, 1996; 
Krejsa et al., 1999; Woodbury, 2000; Shiguemori et al., 2004). In this paper, a MLP (Multi Layer 
Perceptron) Artificial Neural Network (ANN) is used to address this problem. 

The supervised learning nature of the MLP network requires training sets to be furnished as 
inputs and desired outputs. The inputs are measured satellite radiances in different spectral channels, 
and the outputs are the desired corresponding absolute temperature profiles obtained by solving the 
forward model. The MLP network was trained with TIGR temperature profiles database (Chédin et al., 
1995; TIGR 2005), and NESDISPR database obtained by solving the forward model. Generalization 
tests used TIGR and NESDISPR database examples, in which they were not used in training phase. 

Experiments using both methodologies are employed considering the High Resolution 
Radiation Sounder (HIRS) of NOAA-16 satellite. HIRS is one of the three sounding instruments of the 
TIROS Operational Vertical Sounder (TOVS).  

In this work, the forward model was used in the entropic in the objective function (Carvalho et 
al 1999, Ramos et al. 1999). In the ANN, the RTTOVS-7 model was used to generate the train data 
set, and also for validation and generalization databases. This model simulates the radiances of HIRS-
2 NOAA-16 satellite. 
 
Forward Model 
Equation below represents the mathematical formulation of the forward problem that permits the 
calculation of radiance values from associated temperatures (Liou, 1982) 
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where,  is the value of the spectral radiance, subscript s denotes surface; λ is the channel 
wavelength; p is the considered pressure; 

λI

ℑ  is the space atmospheric layer transmittance function that 
is a function of the wavelength and the concentration of absorbent gas, which usually declines 
exponentially with the height. In pressure coordinate, the transmittance may be expressed by: 
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where,  is the absorption coefficient; q is the ratio of gas mixture; g is the acceleration of the local 

gravity; and p
νk

0 is the pressure in the top of atmosphere; B is Planck's function (equation 3), which is a 
function of the temperature T and the wavelength λ : 
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h is Planck's constant; c is the light speed; and kB is Boltzmann's constant. B
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Equation (1) is discretized using central finite differences leading to equation: 
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where , ;  is the number of satellite channels; ; 

; and N
λ,,1K

p is the number of atmospheric layers considered. It is assumed that each 

atmospheric layer has a characteristic temperature Tj  to be computed. 
In this work, the forward model is used to the both methodologies. The entropic 

regularization employs it in the minimization functional and the ANN to simulate radiances to 
train, validation and generalization phases, its necessary because there are no satellite 
radiances and radiosonde data. 

 
Entropic Regularization  
The inverse problem is assumed to be solved defined as follows (Ramos and Campos Velho, 1996; 
Campos Velho and Ramos 1997, Carvalho et al. 1999): 

 
find  T  such that  I = K(T)              (5) 

 
where  denotes the unknown parameters, the data-vector and  is an 
operator, linear or not, modeling the relation between T  and  I. Here, the mathetical model K(.) is 
expressed by Equation (4). 

A traditional approach for solving Equation (5) is to determine T in the least square sense. 
Unfortunately, minimization of the distance between computed and experimental data alone does not 
provide a safe inversion technique, due to the presence of noise in y. A better approach, is to formulate 
the inverse problem as: 
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Ω  is a regularization operator, and  is a suitable norm, usually the Euclidean square norm, where ⋅

α  is the regularization parameter. The operator Ω (t) generally expresses a priori information about 
the unknown physical model. In the case of Maximum Entropy regularization, (T) takes the form of 
Shannon's missing information measure: 

Ω

∑
=

−==
N

i
ii qqTST

1
log)()(

 

,  Ω
∑n

i i

i
i

p
p

1=

=q           (7) 

 
S(T) attain its global maximum when all qi are the same, which corresponds to a uniform distribution 
with a value of Smax = log N. On the other hand, the lowest entropy level, Smin = 0, is attained when all 
elements qi but one are set to zero. Maximum Entropy regularization selects the simplest possible 
solution, containing the minimum of structure required to fit the data. 

Ramos and Campos Velho (1996) – see also Campos Velho and Ramos (1997), and Carvalho 
et al. (1999) – proposed a generalization of the standard Maximum Entropy regularization method, 
which allows for a greater exibility when introducing prior information about the expected structure of 
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the true physical model - or its derivatives - into the inversion procedure. The entropic regularization 
function is defined as follows: 
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 p= T                (9) 
 
where α = 0, 1, 2, … and  is a discrete difference operator.  Δ

. 12,...,         with,)(22 minmax1

A method, denoted MaxEnt-2, for a second order entropic regularization is expressed by 
(Ramos and Campos Velho, 1996; Campos Velho and Ramos 1997, Carvalho et al. 1999)   

 
+ =1 −++−= + nitttttp iii −x −ζ (10)

  
In this work, the optimization problem is iteratively solved by the quasi-newtonian optimizer 

routine from the NAG Fortran Library (E04UCF 1995), with variable metrics. This algorithm is 
designed to minimize an arbitrary smooth function subject to constraints (simple bound, linear or 
nonlinear constraints), using a sequential programming method. This routine has been successfully 
used in several previous works: in geophysics, hydrologic optics, and meteorology. 
 
Artificial Neural Networks 
Artificial Neural Networks (ANN) techniques have become important tools for information 
processing. Properties of ANNs make them appropriate for application in pattern recognition, signal 
processing, image processing, financing, computer vision, and so on. There are several ANN different 
architectures. Here a Multilayer Perceptron (MLP) with backpropagation learning is employed.  

Artificial neural networks are made of arrangements of processing elements (neurons). The 
artificial neuron model basically consists of a linear combiner followed by an activation function, 
Figure 1 (a), given by: 
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where wkj are the connections weights, bk is a threshold parameter, xj is the input vector and yk is the 
output of  the kth neuron, the ϕ  is the  function that provides the activation for the neuron. Neural 
networks will solve nonlinear problems, if nonlinear activation functions are used for the hidden 
and/or the output layers.  

Arrangements of such units form the ANNs that are characterized by: 1. Very simple neuron-
like processing elements; 2. Weighted connections between the processing elements (where 
knowledge is stored); 3. Highly parallel processing and distributed control; 4. Automatic learning of 
internal representations. ANNs aim to explore the massively parallel network of simple elements in 
order to yield a result in a very short time slice and, at the same time, with insensitivity to loss and 
failure of some of the elements of the network. These properties make artificial neural networks 
appropriate for application in pattern recognition, signal processing, image processing, financing, 
computer vision, engineering, etc. (Haykin 1994). 
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There exist different ANN architectures that are dependent upon the learning strategy adopted. 
This paper briefly describes the one ANN used in our simulations: the multilayer Perceptron with 
backpropagation learning. Detailed introduction on ANNs can be found in (Haykin 1994). 

Multilayer perceptrons with backpropagation learning algorithm, commonly referred to as 
backpropagation neural networks are feedforward networks composed of an input layer, an output 
layer, and a number of hidden layers, whose aim is to extract high order statistics from the input data. 

Figure 1 (b) depicts a backpropagation neural network with a hidden layer. A feedforward 
network can input vectors of real values onto output vector of real values. The connections among the 
several neurons have associated weights that are adjusted during the learning process, thus changing 
the performance of the network. Two distinct phases can be devised while using an ANN: the training 
phase (learning process) and the run phase (activation of the network). The training phase consists of 
adjusting the weights for the best performance of the network in establishing the mapping of many 
input/output vector pairs. Once trained, the weights are fixed and the network can be presented to new 
inputs for which it calculates the corresponding outputs, based on what it has learned.  

             
Figure 1 (a) Single Neuron                     Figure 1 (b) Multilayer Neural Network 

 
The backpropagation training is a supervised learning algorithm that requires both input and 

output (desired) data. Such pairs permit the calculation of the error of the network as the difference 
between the calculated output and the desired vector. The weight adjustments are conducted by 
backpropagating such error to the network, governed by a change rule. The weights are changed by an 
amount proportional to the error at that unit, times the output of the unit feeding into the weight. 
Equation (xx) shows the general weight correction according to the so-called the delta rule 

 

jkykjw =Δ

k

ηδ                          (12) 

 
δ  is the local gradient,  is the input signal of neuron j, and kywhere, η  is the learning rate parameter 

that controls the strength of change. 
 

Retrieval using ANN 
Artificial neural networks have two stages in their application, the learning and activation 

steps. During the learning step, the weights and bias corresponding to each connection are adjusted to 
some reference examples. For activation, the output is obtained based on the weights and bias 
computed in the learning phase. Its important to test the ANN with data not used in training phase, this 
process is called generalization phase. 

 
Noise data simulation 
The experimental data, which intrinsically contains errors in the real world, is simulated by adding a 
random perturbation to the exact solution of the direct problem, such that 
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~ σμexactexact III +=             (13) 

 
σ  is the standard deviation of the noise and where μ  is a random variable taken from a Gaussian 

distribution. The noise data was based in actual situation of NOAA-16, HIRS Instrument, Longwave 
Channel Noise (NOAA-16 2005). 
 
Databases 
Two different database for temperature profiles were used: TIGR (Thermodynamic Initial Guess 
Retrieval) and NESDISPR worldwide climatological profile - a file created by the NOAA/NESDIS. 
The data sets were divided as: training, validation, and generalization data sets (Figure 2). The training 
and validation data are used for training the Artificial Neural Network, and the generalization data set 
are profiles not used during the training phase. The Table (1) show the number of temperature profiles 
of each database. 
 

Temperature Profiles
Database

Generalization set

Training set

Validation set

 
Figure 2 – Database  

   
Table 1 – Number of profiles. 

Database Training Validation Generalization 
TIGR 587 587 587 

NESDISPR 405 400 400 
 

Results analysis 
The results presented in this paper were obtained using a code in Fortran 90 for implementing the 
artificial neural network and maximum entropy regularization. There are very good computer 
packages for neural networks available, but we decide to have our code, because we are looking at an 
operational application. 

The root mean-squared error of the generalization sets TIGR (587 profiles) and NESDISPR 
(400 profiles) are presented in Table 3, the errors are calculated in the Layer-1: 0.1 up to 15 hPa; 
Layer 2: 20 up to 70 hPa; Layer-3: 85 up to 200 hPa; Layer-4: 250 up to 475 hPa; Layer-5: 500 up to 
1000 hPa; This segmentation feature is important because the main interest for meteorological 
purposes is in the layers below 100 hPa, , where 1 hPa = 100 Pa. 

The error for each Layer is computed by: 
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where N is the number of sample points at each layer. 
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Figure 3 – Layers of atmospheric profile  

 
Entropic Regularization Results 
Entropic regularized solution is obtained by choosing the function t* that minimizes the functional (2).  
Table 2 presents the average error of entropic regularization (MaxEnt-2), defined by Eq. (14), of TIGR 
(587 profiles) and NESDISPR (400 profiles) databases. It was used a mean regularization parameter 
( 5.0) for all cases. It can be noted that the error for the Layer 1 and Layer 2 have good 
approximation, these layers are more important for meteorological purposes. The Figures 3 (a-b) 
present two examples of TIGR database and Figures 3 (c-d) NESDISPR database examples.  
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Figure 4 Examples results obtained with second order entropic regularization (a) and (b) 
TIGR database. (c) and (d) – NESDISPR database. 
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Artificial Neural Networks Results 
In the activation phase, the inverse problem is solved by weights and bias obtained during the training 
phase. The robustness of the trained MLP is evaluated employing satellite radiances and temperature 
profiles not used in the training phase (generalization). 
The generalization capacity of the MLP is verified considering TIGR (587 profiles) and NESDISPR 
(400 profiles) databases. Table 2 shows the ANN average error (ANN) of generalization databases, 
defined by Eq. (14), using 8 hidden neurons in the hidden layer. The estimation using ANN presents 
small errors. The following figures present some examples of the ANN results. The Figure 5 (a-b) 
were obtained by the ANN trained with TIGR database. The Figure 4 (c-d) with the ANN trained with 
NESDISPR database.    
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Figure 5 (a) and (b) Examples of generalization tests, obtained with the ANN trained 
with TIGR data sets. (c) and (d) – Generalization tests, obtained with the ANN trained 
with NESDISPR data sets. 
 

Table 2 – Error for generalization database. 
Methodology Database Neurons Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

ANN TIGR 8 1.8161 0.9438 0.7043 0.7308 0.5153 
MaxEnt-2 TIGR * 7.2910 1.4441 1.1592 1.5244 0.6869 

ANN NESDISPR 8 0.8836 0.6641 0.7714 0.3720 0.4849 
MaxEnt-2 NESDIS * 5.0706 1.5024 2.2225 0.9468 0.5057 

 
Final Remarks  
The retrieval of atmospheric temperature profile has been addressed using two different approaches, 
and employing two temperature databases: TIGR and NESDISPR, testing about 1000 profiles. Both 
methodologies implemented have produced good inversions, even for data containing real noise of the 
NOAA-16 satellite HIRS sounder. 

Concerning the computational time requested by the methodologies used in this work, it 
should be pointed out that the ANN have two different phases: training and activation. The training 
phase usually is very CPU time consuming, and for the present problem it is requiring some hours. 
However, this step is done only one time. After the training, the activation phase is very fast, usually 
takes less than one second. The latter phase represents the real inverse problem solution. Regarding 
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the regularization, the CPU-time was around few seconds. All computational simulations have been 
performed in a personal computer with an Athlon - 1.8 GHz processor. 
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