Estimating instability indices from MODIS infrared measurements over the Korean Peninsula

B. J. Sohn¹, Sung-Hee Park¹, Eui-Seok Chung¹, and Marianne Koenig²

¹School of Earth and Environmental Sciences Seoul National University, Seoul, Korea sohn@snu.ac.kr

²EUMETSAT, Darmstadt, Germany

Instability Indices (II)

Il provides the air mass parameters that can be used for short term forecasting, in particular, severe storm warning.

Lifted Index:

LI = T^{obs} - T^{lifted from surface} at 500 mb

• K-Index:

 $KI = (T^{obs(850)} - T^{obs(500)}) + TD^{obs(850)} - (T^{obs(700)} - TD^{obs(700)})$

SK-Index:

 $SKI = (T^{obs(surface)} - T^{obs(500)}) + TD^{obs(surface)} - (T^{obs(700)} - TD^{obs(700)})$

KO-Index:

 $KO = 0.5 * (\Theta_e^{obs(500)} + \Theta_e^{obs(700)} - \Theta_e^{obs(850)} - \Theta_e^{obs(1000)})$

Maximum Buoyancy Index:

MB = $\Theta_e^{\text{obs}(\text{maximum bet surface and 850})}$ - $\Theta_e^{\text{obs}(\text{minimum bet 700 and 300})}$

Interactive retrieval of the temperature and humidity profile (Ma et al., 1999)

 $\mathbf{x}_{n+1} = \mathbf{x}_{0} + (\mathbf{S}_{x}^{-1} + \mathbf{K}_{n}^{T} \mathbf{S}_{e}^{-1} \mathbf{K}_{n})^{-1} \mathbf{x} \mathbf{K}_{n}^{T} \mathbf{S}_{e}^{-1} [(\mathbf{T}_{B}^{-1} - \mathbf{T}_{B}^{n}) + \mathbf{K}_{n} (\mathbf{x}_{n}^{-1} - \mathbf{x}_{0}^{-1})]$

Profile vector **x** at an iteration step n can be obtained from:

- **x**₀: first guess profile
- T_B: observed EBBT
- T_B^n : simulated TB for profile an an iteration step n
- $\mathbf{S}_{\mathbf{x}}$: correlation matrix of first guess errors
- \mathbf{S}_{e} : error covariance matrix of observed TB and of radiation model
- \mathbf{K}_{n} : Jacobians, change of EBBT with a changed profile:

 $\mathbf{K}_{n}(m,i) = \partial \mathbf{TB}^{n}(m) / \partial \mathbf{x}_{n}(i)$, m: channel numbers, *i*: profile vector

EBBT = Equivalent Blackbody Brightness Temperature

MODIS IR channels used in this study

Primary application	channel #	Band width (μm)
Moisture profile	27 28 29	6.535-6.895 7.175-7.475 8.400-8.700
Surface temperature and TPW	31 32	10.780-11.280 11.770-12.270
Temperature	33	13.185-13.485

Retrieval procedures

- Forward model calculation to obtain EBBT
- Fast model calculation using RTTOV-7 (Jacobian calculation for the derivative)
- First guess field from the interpolation of KMA RDAPS forecast profiles (10 km resolution)

Flow chart

MODIS channel TB simulation (0300UTC 27 Oct. 2003)

Example of retrieved profiles

(July 31, 2004, at Osan Korea)

Case 1: Frontal passage (27-28 Oct. 2003)

GOES 7 IR Images

Hourly rainfall (mm)

100 90 80

35

30

16 14 12

3.0

.5

0.8 0.6 0.4 0.2 0.1

Case 1 (Cont.)

From the night of 27 Oct. 2003 to the morning of 28.

Fig. (c) and (d)

KI and LI from NASA GDAAC: They showed weak unstable conditions near the cloud edge but seemed to fail to predict thunderstorm shower associated with the frontal passage.

Case 1 (Cont.)

130E

130E

Case 2 (31 July 2004)

Convective storm in front of Typhoon Namtheun

Scattered convective storm over the peninsula

Forecasts on 31 July 2004 over the peninsula Central region – partly cloudy, Southern region – partly to mostly cloudy

Case 2 (Cont.)

KI from MODIS

GOES-9 VIS image

Rain gauge (mm/hr)

Summary and conclusions

- It was possible to derive air mass parameters with a satisfactory quality using a physical retrieval scheme.
- It seems to produce better air mass parameters than currently produced II by NASA GDACC.
- MODIS IR measurements may provide extra information to forecasters for the short-term forecasting.
- MW measurements over the H₂O and O₂ bands and window region may be used for obtaining II over the cloudy area.

International TOVS Study Conference, 14th, ITSC-14, Beijing, China, 25-31 May 2005. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2005.