Survey of cirrus and atmospheric properties from TOVS Path-B

Claudia Stubenrauch

+ Atmospheric Radiation Analysis (ARA) group

IPSL - Laboratoire de Météorologie Dynamique, France

Beijing May 2005

TOVS Path-B Dataset
& average cloud properties

Variability of cirrus properties

♦ Reanalysis

Upper trop. humidity + evolution of contrails

(collaboration with U. Schumann, DLR)

TOVS Path-B climatology:..., 1987- 1995, ...

Scott et al., BAMS, 1999

- <u>atmospheric</u> temperature (9 layers, \geq 10hPa), water vapor (5 layers, \geq 100hPa)
- effective <u>cloud</u> amount (ECA), cloud top pressure (Stubenrauch et al. 1999)
- D_e, IWP of cirrus (CIRAMOSA, poster Eddounia et al.)
- horizontal extent of high clouds (G. Rädel)
- upper tropospheric relative humidity

3I based on: controlled use of a priori information: radiosondes - radiative transfer **TIGR** dataset: $T(p_k)$, $H_2O(p_k)$, $T_s - R_{clr}(\lambda_i, \theta)$, $R_{cld}(\lambda_i, p_k, \theta)$

Thermodynamic Initial Guess Retrieval

Beijing May 2005

Average cloud properties

Cloud type amounts (%)	globa	ocean		land		
all	73	<u>65</u>	74	71	<i>69</i>	58
Deep convection	2.4	2.8	1.9	2.8	3.5	2.7
Cirrus	27.3	<i>19.1</i>	26.9	18.0	27.8	21.7
Mid-level	12.1	18.5	10.3	18.4	16.6	18.5
Low-level	30.9	26.7	35.1	30.6	20.5	17.7

0 = 0 = 0 (1007 1005) TOYC Deth D / ICCCD

~ 70 % cloud amount: *mor* ~ 30% low clouds: *more over ocean than over land* ~30% high clouds: same over ocean and land Vertical sounders more sensitive to Cirrus clouds (8% more than ISCCP)

Observed Global Climate, Chap. 'Clouds', June 2005, Springer

Beijing May 2005

Average regional high cloud properties

8 year (1987-1995) TOVS Path-B / ISCCP

Cloud type amounts (%)	NH m	idlat.	trop	ics	SH m	idlat.
Deep convection	3.0	3.3	2.5	3.5	2.4	3.0
Cirrus	24.7	20.3	44.8	24.9	21.8	<i>16.5</i>

 only 3% convection
IR vertical sounders: identify Ci <u>day + night</u> more sensitive to Ci: midlat. +4% tropics +20%

diurnal cycle of high cloud type frequencies

NOAA10/12 7h30 AM&PM, NOAA11 2h00 AM&PM(1989-90) NOAA11 4h30 AM&PM(1994-95)

*Reanalysis of entire TOVS data at LMD:

Improved TIGR database

- extention from 1763 to 2311 atmospheric profiles (in tropics)
- new 4A model (spectroscopy, continuum) for T_B computation
- new surface emissivities (FASTEM-2, S. English)
- O₃ profiles from UGAMP climatology
- new extrapolation of T and H₂O towards stratosphere from ATMOS

3I Inversion

- scheme adapted to new TIGR
- new neural network inversion for $H_2O(p)$ and T_{surf}

Adjustment constants (« deltacs »)

1987-1995: DSD5 radiosonde-TOVS dataset from NOAA : clear /cloudy

1979-2004: *ERA-40* « cleaned » radiosonde-TOVS data collocated, clear sky determination

(*radiosonde temperatures during day not corrected in stratosphere*) Beijing May 2005 ITWG 14

TOVS Reanalysis: 1 year of cloud data (1990)

preliminary

Beijing May 2005

Determination of TOVS relative humidity (per layer)

• TOVS Path-B precipitable water column: 300 - 100 hPa $W = \int_{p}^{p0} q \frac{dp}{s \, g\rho}$

=> rel. humidity per layer: $RH^{ice}(\Delta p) = g\rho W / \int q_{sat}^{ice}(p) dp$

1) 3I retrieved atmospheric T profile (30 levels) -> $e_{sat}^{ice}(T)$ $\ln(e_{sat}) = \frac{a_1}{T} + a_2 + a_3T + a_4T^2 + a_5\ln(T)$ (Sonntag, 1990) at 86, 106, 131, 162, 200, 223, 248, 276 and 307 hPa

2) integrate q_{sat}^{ice} over column (in steps of 1hPa): $\int q_{sat}^{ice}(p)dp = \sum 0.622 \frac{e_{sat}^{ice}(T(p))}{p - (1 - 0.622)e_{sat}^{ice}(T(p))}$

Relative humidity distributions *in case of clear sky and thin cirrus* ($N\varepsilon < 0.5$)

over 8 years

Thin cirrus have broader RH distributions than clear sky

• However, clear sky can also be ice saturated (in agreement with Gierens et al. 1999)

Beijing May 2005

Evolution of contrails from TOVS

C. Stubenrauch, U. Schumann

♦ contrails: cold and moist ambient air, RH > U*(T)

Schmidt, 1941 Schumann 1996

♦ critical rel. humidity TOVS: integrate over layer $\int [G \cdot (T - T_{lmax}) + e_{sat}^{liq}(T_{lmax})] dp$ T_{lmax}=230.8K e_{sat}^{liq}(T_{lmax})=20.6hPa $U^*(\Delta p) = \frac{100-300hPa}{\int e_{sat}^{liq}(T) dp}$ Kerosen: G = 1.5

• Sausen et al. 1997: potential contrail if $U_{ci} > RH > U^*U_{ci}$

 Difference in trends of effective high cloud amount between situations of potential contrails – cirrus and situations of potential contrails – all

Beijing May 2005

ECA increase per decade for potential contrail situations

ECA trend difference (%/decade) between potential contrail and cirrus / all situations

region/season	Europe	NAF	NA	SA
all pc-all/pc-ci	2.8 / 3.5	1.6 / 4.7	0.6/ -0.2	-1.6/ -0.9

uncertainty estimates 1.5%/decade (from threshold variations)

Stubenrauch + Schumann, GRL 2005 in revision

However: Occurrence of pot. contrail situations is small: 5 - 10%

Overall effect: over Europe ~0.19% - 0.25% per decade over NAF ~0.08% - 0.24% per decade

Satellite observations:

unique possibility to study cloud properties over long period 30% high clouds, stable within 2% over globe

seasonal and diurnal variabilities in high clouds:

- strongest seasonal cycles over land in subtropics (ITCZ shift)
- strongest diurnal cycles over land in tropics & summer
- convection in evening, cirrus during night, thin cirrus in afternoon

TOVS reanalysis : understand small changes in summer midlat. cloud properties

Contrail analysis:

only by extracting situations of potential contrails -> positive trend of εN in regions of high air traffic in general small: ~0.2% per decade International TOVS Study Conference, 14th, ITSC-14, Beijing, China, 25-31 May 2005. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2005.