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Introduction

For the past decade the Meteorological Service of Canada (MSC) has been using the fast line-by-line
radiative transfer model (FLBL) to generate accurate transmission/radiance databases from
representative atmosphere databases for the purpose of validation, and for generating coefficients for
fast forward models, such as MSCFAST (Garand, 1999). The FLBL is alsoused as a research tool.
For example; the examination of the approximations used by forward models to identify systematic
errors and to indicate potential methods of improvement (eg: Turner, 2004, Turner, 2000).

Many organizations have developed tangent linear adjoint models for data assimilation. In order to
validate the adjoint models, the gradient of the radiative transfer model (or Jacobian) is required. In
the past a brute force method is used to calculate a Jacobian with the FLBL. In the case of a top of
the atmosphere (TOA) radiance, this entails perturbing each variable in the radiative transfer
equation, in turn, by some amount and recalculating the radiance. The original and perturbed
radiances are then numerically differenced to obtain the derivative with to the perturbed variable.
This is a time consuming process since it requires the FLBL to be executed each time a variable is
perturbed.

It would be advantageous to have a more accurate and faster gradient model than the brute force
method as a research tool. An analytical differentiation of the FLBL model was performed, which
lead to a much faster and less error-prone gradient model. The Gradient FLBL, GFLBL, is
considerably faster than the brute force FLBL model and as such could be used effectively for
validating the gradient and tangent linear adjoint of a fast forward model. The following is a brief
review of the FLBL radiative transfer model followed on by the introduction of the gradient GFLBL
and some simple applications.

The Fast Line-by-line Layer-by-layer Model
The mono-chromatic radiative transfer equation describing the top of the atmosphere (TOA) radiance
received by a satellite from a surface, assuming a non-scattering plane-parallel atmosphere and

neglecting the reflected downwelling flux and solar terms, is the sum of two terms; the attenuated
upward surface emission, R, and the sum of the attenuated upward atmospheric emissions, R, ; ie,

%= R+ R, = e(VBUIY) I(0.p,.9) + [ B(p.9)dS(6,p,) (1)

where p is the pressure, 0 is the zenith angle defining the upward surface to TOA path, B is the
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Planck function, & is the p to TOA transmittance, and € is the surface emissivity. The subscript ‘s’
denotes a surface which can be a topographical or cloud top surface. g, B, € and r are functions of
wavenumber, U.

Equation 1 can be written in numerical form as:

R = ,(V)B,(9) 3,(6,9) + ) B(¥) (3 ,(6,9)- F(6,%) )
j=0
j
- - Y %69 . . . .
where $.(0,V) = e i1 and y , is the optical thickness of the i" layer.

J
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assuming that Lnp, T and c vary linearly Temperature

with z and integrating across thelayer. The Fig. 1: Schematic of a 3 gas atmosphere model
mean layer values are used to evaluate optical with a single layer highlighted.

thicknesses.

The most accurate method of evaluating Eqn 2 is by use of aline-by-line radiative transfer model
(LBL). The LBL signifies that the absorption coefficientis determined from basic physics, that is
—the shape of the spectral lines, their positions and overlaps with other spectral lines, are explicitly
accounted for. This physics is contained in the absorption coefficient component of the optical
depth.

The layer optical depth is the sum of the product of the spectral line absorption coefficient, k, and the
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absorber amount, u, for each absorbing component within the layer, plus any continuum

contributions, ¥ uinum sthat is—
N

X (8,V) = Zf k(Do T 0 ¥) 1y Xc;;muum (8,9) C))
0=1
The absorption coefficient at a specified wavenumber is built up by the summation of contributions
from neighbouring lines, hence the term “line-by-line”. This summation is defined as,
Nliney

k(V) = E Skam(v’fka)f((’_ Vokoms Pros ]:ka’ Upy) ®)
m=1

where S is the spectral line strength atv , and f is its shape function.

Potentially thousands of lines may be required to build a single point in an optical depth spectrum.
Consequently, LBL calculations are relatively slow due to the many sums required to evaluate the
absorption coefficients.

In order to speed up LBL calculations sufficiently for use as a research tool, a faster LBL, the FLBL,
was developed (Turner, 1995). In this model, the time consuming “line-by-line” part was replaced
with high resolution absorption coefficient lookup tables (k-tables), thereby transferring the CPU
intensive Eqn 5 to a “once-only” off-line operation. A side benefit of this replacement is the vast
simplification of the LBL code which in turn allows the code to be easily tailored to specific projects.

K-tables as a function of absorber, pressure, temperature and wavenumber have been created using a
conventional LBL and HITRAN data (Rothman et al, 2003). Each table can be thought of as a
collection of tables, one table per wavenumber. Consequently the spectral resolution of the FLBL is
the resolution of the tables. Each table contains k(¥) on a defined set of pressures and temperatures.
The required k(¥,p, T) is found using a bi-cubic interpolation routine. In principle the tables should
have a absorber amount dependancy however the dependence is sufficiently weak in the atmosphere
that it can be ignored'. This simplification allows k and u to be treated independently with little loss
in accuracy.

Once the spectra have been produced, simulated satellite radiances are formed by convolving the
spectrum with the instrument response functions.

The Gradient FLBL (GFLBL)

One method of obtaining a Jacobian profile is by using a brute force method. This entails perturbing
each level by +/-6m, calculating the resulting radiance and numerically differentiating; ie,

ot _ R(n,+dn) - R(n,-dn) ©
on, 20m

' Water vapour is an exception, however it can be separated into two components that are independent

of absorber amount (Turner, 1995)
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With this method a complete Jacobian profile would require 2*N separate FLBL executions. In
practise the FLBL is not executed 2*N times independently, but uses a specialized version (BFFLBL)
to do the perturbations and differencing internally for an entire profile. This version can only perturb
one variable at a time, hence separate runs are required to generate a temperature or a volume mixing
ratio Jacobian profile. This process is very time consuming. In addition, some experimentation is
needed to determine a suitable value for the perturbation.

In order to make finding the gradient more efficient and accurate, Eqn 2 is differentiated analytically
with respect to the profile temperatures and volume mixing ratios at each prescribed level.

ar, @ ) 3 — - a7, 3
—agt :‘éRs AS-Bs - - X?+1 - ﬁ+ i % :|+ gtp Bp Ap p+ é’tp+1 ( p+1Ap+1 - ﬁ
a-rlp anp anp anp g anp anp anp
— ax — ax +1 ax +1
B3 %ip g e [Zen Z R 7
pP Panp p+1%p+1 aTlp 3"11, a'ﬂp v, k ( )
/T, e, 9/T,
e - Cc, e
where 4, = 2 —. 4, = 2 —.
o2 &2
oV T, viT,
The optical depth derivatives are
E & du ok E & ou ok
X1 Z kp+lll peLly Upit10 L and S Z kpa £+ Upy P! ®)
on, i oo, ©oon, on, =1 on, on,

The absorption coefficient is evaluated using the layer’s mean values, p and T , thus their derivatives
with respect to the levels n must be known. Notingthat p and T are dependent on all adjacent level
values (see Eqn 3), then:

akp+lll a]ip+1,ll aI;p+l,ll akp+ll p+lll akp+ll p+lﬂ and akpﬂ - ak appl + al?ﬂ anl + alipﬂ achﬂ
on, Bpere OM, 0T, M, 8G,, Om, om, appa om, oT,, om, 9c,, om,
6k
The derivatives —- and are evaluated from the look-up table simultaneously with k since the bi-

0Py an .

cubic interpolation coefficients can also be used to evaluate the derivatives. Since k& ” is assumed to

. dk
be independent of absorber amount,aT”” =0.
Cpo

The current GFLBL code generates;

1) TOA transmittance profiles for each individual gas, the total (all absorbers), the so-called
uniformly mixed gases (UMG), and water vapour plus UMG;

2) the Planck-weighted equivalents of item 1,

3) the attenuated p, to TOA surface emission assuming €,=1

4) the attenuated p, to TOA atmospheric emissions

5) the derivative of item 3 (k= s) with respect to p,, T,, and c,.

6) the derivative of item 4 (k= s) with respect to p,, T,, and c,,.

The attenuated surface radiances, item 3, is a set of radiances that assumes a surface exists at all
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levels. This is useful for considering “black” clouds at level k. Items 5 and 6 are kept separate in

order to avoid executing the GFLBL for different values of surface emissivity (assuming € is constant
across the response function).

Comparison Between BFFLBL and GFLBL

The BFFLBL and GFLBL models were compared by calculating the temperature, water vapour and
ozone Jacobians for 20 AIRS channels. The channels and 53 profiles selected are taken from a recent
inter-comparison of radiative transfer models for simulating AIRS radiances (Saunders, 2005, URL

2003). The temperature perturbation and volume mixing ratio perturbation used by the BFFLBL is
+%K and +5% of the vmr respectively.

A sample ofthe Jacobian comparisons is shown in figure 2. In general, the two compare very well,
however occasionally the BFFLBL curves can be noisy. The noise, as yet, has never appeared in any

temperature Jacobian curves but does occasionally appear in volume mixing ratio Jacobians. This
noise is likely due to numerics.

In addition the GFLBL compared moderately well against other models the aforementioned inter-
comparison.

Finally, ona LINUX workstation (1686 under RedHat8) the amount of CPU consumed for GFLBL is
measured in seconds, whereas to obtain the same volume of results the BFFLBL consumes is
measured in hours. Typically the BFLBL consumes 700 times more CPU time.
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Fig. 2: Comparison of the GFLBL and BFFLBL temperature, H,O vmr and O,

vmr Jacobian profiles for 3 AIRS channels assuming profile 52 of the
ECMWEF set.
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Applications

In general the gradient version of fast forward models are, by design, incapable of producing
Jacobian profiles of each of the individual absorbers imbedded in the model. Consequently they
cannot be used to access the sensitivity of these absorbers to perturbations in the atmosphere. The
GFLBL can be used to obtain the Jacobian profile for each absorber used by the model. Because of
its speed, it can produce Jacobian profiles for many different atmospheres in a reasonable amount of
time. For example, Fig. 3 is a plot of the temperature and eight volume mixing ratios sensitivities for
seven AIRS channels around 2386(cm™) based on the 53 1C2003 inter-comparison profiles. The
sensitivity is an estimate of the change in brightness temperature for a change in temperature, AT, or
change in volume mixing ratio as a percentage at some level; ie,

sty - aT 8L o s, = ac, OBL ©)
k Cre
where T = 1K anda = .1 (10%)
= H20 o2 03 N20 CO CH4 02 N2
E 2
§ ‘ g

P .

?—- o V— o 3
k4

Pt Lo

S0LZSHIY SOLZSHIY

Pressure {mb)

Pressure {mb)

Pressure {mb)
01ZSHIY

Pressure {mb)

B

(=1 M—— o
AN
8OLZSHIY

3 B
= ]
o

2 ]
3 3 »
n et
ﬁ Z Jr < 2
o

5 0 5.5 0 5 4 0 45 0 5 1 0 1

) »
= 2
B
¢ 'Z <] 3
o

5 0 55 0 5 4 0 45 0 5 4 0 1
sx10® S x10° S x10° sx10® sx102

Fig. 3: Plot of the sensitivity of a group of AIRS channels to a 1K or 10% change in
temperature or vmr for 53 atmospheres. The solid black line is for profile 52.
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As can be seen in Fig. 3, these channels are most sensitive to temperature and CO,, and to a small
extent H,O. There is a strong sensitivity to N,, however 10% changes in N, are highly unlikely. The
sensitivity to H,O increases with channel. Usually one gauges the suitability of a channel by
considering only the profiles for a couple of a atmospheres. However, with a larger group of profiles
one can see that the average atmosphere doesn’t necessarily coincide with an average sensitivity. In
fact there is significant variation in both the temperature and CO, profiles around the mean profiles at

heights where the average shows no significant values.

Another use of the GFLBL is to validate re-mapping algorithms. For example, one cannot directly
compare a Jacobian profile calculated on a set of M-levels with a calculation on a set of N-levels by
simple interpolation since the Jacobian calculation at a specific level is implicitly dependent on the
thicknesses of the layers adjacent to the level.

One method to remap a Jacobian profile from M to N levels is by weighting the M-Jacobian profile
with its adjacent layers, interpolating the result to N-levels and then weighting it with the new
adjacent layers, that is—

y B=(p-p', i=1 B=(py-p), Jj=1
* Ji . N * .
iy B=(p¥i-pY), i=2M-1and J"=J"B{B=(p)-p ), j=2,N-1
B= (P -Pur)s i=M B=(py-Nyy, Jj=N

where Ji* is interpolated onto Jj* via linear interpolation.

To see how well this algorithm performs, the temperature Jacobian profile for a few channels was
evaluated on five versions of the same atmosphere. Each atmosphere is an interpolation of the
original atmosphere, from 25 levels to 6, 12, 25, 50 and 98 levels. For this example the top and
bottom levels of the five atmospheres were fixed to the same pressure. The other levels are spaced
such that the number of molecules per layer slowly decreases with height.

The Jacobians of these five atmospheres were then remapped to the other four atmospheres for a total
of 25 possible re-mappings. Figure 4 compares these re-mappings with the “truth” as evaluated by
the GFLBL for two AIRS channels. In general this method works fairly well for cases when M is
greater than N. However the location and number of levels are factors that must be considered. It
should also be noted that this method does not work equally well for all channels as demonstrated in
Fig. 4 where the method does a better job in AIRS 1090 than in AIRS 1766.
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Fig 4: Remapping of a M-level Jacobian (—) to a N-level Jacobian (—) using the
weighted adjacent layers method. The results are compared with the GFLBL
(—)results.

Another method of remapping a Jacobian profile from M to N levels is to use the adjoint code of a

forward linear interpolation routine. Figure 5 illustrates the adjoint method using the same setup as
was used for figure4.

25 to 6 levels 25 to 12 levels 25 to 25 levels 25 to 50 levels 25 to 98 levels
0.01 0.01 0.01 0.01
.’g 0.1 0.1 0.1 0.1
5 1 1 1 1
E: 10 10 10 10
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1000 1000 . 1000 1000
dR/T dRAT dRAT

Fig 5: Remapping of a M-level Jacobian (—) to a N-level Jacobian (—) using the adjoint
method. The results are compared with the GFLBL (—)results. Profile 52 and
AIRS 1090 are considered for this example.

The adjoint method works fine when the re-mapping steps down from M to N levels. Unfortunately a
significant amount of noise is introduced one is stepping up. This method is used to transfer the
radiance Jacobians from a 43 level model to a 28 level model in MSC’s NWP model, thus when the
number of NWP levels is raised, either a new method has to be adopted or the number of radiation
levels increased.

Conclusions

A gradient version of the FLBL has been developed that is relatively quick and accurate. Its intent is
to complement the FLBL as a research tool for examining Jacobians, sensitivities and anything else
that is related to the gradient of the radiative transfer equation. It has been used to demonstrate
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problems in the remapping of Jacobian profiles when mapping from a few levels to many levels using
the adjoint method.

In its current form it the GFLBL does not consider the reflected down-welling flux term or the solar
term in a non-scattering atmosphere, although the most recent version of the FLBL can. The next
version of the GFLBL will be incorporating one or both of these. In addition the model will extended
to include spherical geometry in order to handle limb sounding.
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	AIRS spatial coverage is provided by the scan head assembly, containing a cross track rotary scan mirror and calibrators. The scan mirror has two speed regimes: During the first 2 seconds it rotates at 49.5 degree/second, generating a scan line with 90 ground footprints, each with a 1.1 degree diameter field-of-view (FOV). During the remaining 0.667 seconds the scan mirror finishes the remaining 261 degrees of a full revolution.  The AIRS spatial distribution is used in the collocation between the MODIS and AIRS measurements, which is the first step for the optimal MODIS/AIRS cloud-clearing.  The MODIS pixels with 1 km spatial resolution are collocated within an AIRS footprint.  Several collocation algorithms have been developed that are based on the scanning geometry of two instruments flown on the same satellite (Nagle 1998; Frey et al. 1995).  With a set of AIRS earth-located observations, the footprint of each AIRS observation describes a figure that is circular at nadir, quasi-ellipsoidal at intermediate scan angles, and ovular at extreme scan angles.  The diameter of the AIRS footprint at nadir is approximately 13.5 km.  Depending on the angular difference between the AIRS and MODIS slant range vectors, a weight (() is assigned to each MODIS pixel collocated to AIRS: 1 if the MODIS pixel lies at the center of the AIRS oval, and zero if at the outer edge. The collocation is modeled correctly and the algorithm provides an accuracy better than 1 km, provided that the geometry information from both instruments is accurate.    
	  
	In this paper, optimal cloud-clearing for sounder cloudy radiances using imager IR clear radiances has been successfully demonstrated by using AIRS and MODIS.  About 30% of AIRS cloudy footprints (or 50% of the partly cloudy footprints) are successfully cloud-cleared with the help of MODIS high spatial resolution data.  In the optimal imager/sounder cloud-clearing, the imager provides a cloud mask for sounder footprints while the multispectral imager IR provides clear radiance observations to synergistically determine N* and to be used as quality control.  The following conclusions can be drawn from this study: 
	 
	This work is very effective for cloud-clearing the AIRS footprints contaminated by water clouds.  The approach could be employed on GOES-R with HES sounder and ABI (e.g., ABI 3.9, 6.15, 7.0, 7.4, 8.5, 9.73, 10.35, 11.2, 12.3 and 13.3 (m bands are critical for HES/ABI cloud-clearing).  Future work will focus on cloud-clearing for footprints with mutli-layer clouds.  For example, employing multi-layer cloud-clearing approach developed by Susskind et al. [2] and using MODIS clear observations for high spatial resolution cloud-clearing could be of great potential 
	  
	Frey, R. A., S. A. Ackerman, and B. J. Soden, 1995: Climate parameters from  
	satellite spectral measurements.  Part I: Collocated AVHRR and HIRS/2 observations of spectral greenhouse parameter,  J. Clim., vol. 9, pp.327 – 344. 
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