

JCSDA Community Radiative Transfer Model (CRTM) Framework

Paul van Delst¹, Yong Han², and Quanhua Liu³ 1CIMSS@NOAA/NCEP/EMC, University of Wisconsin - Madison ²NOAA/NESDIS ³QSS Group, Inc

Joint Center for Satellite Data Assimilation (JCSDA) Camp Springs MD USA

JCSDA Mission

· Accelerate and improve the quantitative use of research and operational satellite data in weather and climate prediction models

JCSDA Goals

- · Reduce from two years to one year the average time for operational implementation of new satellite technology
- Increase uses of current satellite data in NWP models
- · Advance the common NWP models and data assimilation infrastructure
- · Assess the impacts of data from advanced satellite sensors on weather and climate predictions

What is the CRTM Framework?

- · At the simplest level, it's a collection of structure definitions, interface definitions, and stub routines.
- · There are User and Developer interfaces, as well as Shared Data interfaces and I/O.
- More detailed information, as well as source code and test data files, is available from:

http://cimss.ssec.wisc.edu/~paulv/CRTM

User Interface

Why do this?

- · The radiative transfer problem is split into various components (e.g. gaseous absorption, scattering etc). Each component defines its own structure definition and application modules to facilitate independent development.
- · Want to minimise or eliminate potential software conflicts and redundancies.
- · Components developed by different groups can "simply" be dropped into the framework. This is an ideal characterisation, as there may be dependencies between components.
- Faster implementation of new science and algorithms.

Current Forward CRTM Interface

Error_Status = CRTM_Forward(Atmosphere, & Surface, &

 All data contained in structures. Additional "arguments" can be added as required to structures - no impa

routine.

Allo

L = number of channels; M = number of profiles				
	INPUTS	OUTPUTS		
	Atmosphere Surface	RTSolution		
	GeometryInfo			
	Scalar	L		
	М	L×M		

Type Name	Description
CRTM_ChannelInfo_type	Sensor channel information filled during initialisation.
CRTM_Atmosphere_type	Atmospheric state profile data. Contains Cloud and Aerosol structures.
CRTM_Surface_type	Surface type and state information. Contains SensorData structure.
CRTM_GeometryInfo_type	Earth location, zenith and azimuth angles.
CRTM_RTSolution_type	Radiative transfer results.

PUBLIC CRTM Data Structures

Example: Definition of Atmosphere Structure

TYPE, PUBLIC :: CRTM_Atmosphere_type
! Dimension values
INTEGER :: Max_Layers = 0 ! K dimension
INTEGER :: n_Layers = 0 ! Kuse dimension
INTEGER :: n_Absorbers = 0 ! J dimension
INTEGER :: Max_Clouds = 0 ! Nc dimension
INTEGER :: n_Clouds = 0 ! NcUse dimension
INTEGER :: Max_Aerosols = 0 ! Na dimension
INTEGER :: n_Aerosols = 0 ! NaUse dimension
! Climatology model associated with the profile
INTEGER :: Climatology = INVALID_MODEL
! Absorber ID and units
INTEGER, DIMENSION(:), POINTER :: Absorber_ID => NULL() ! J
INTEGER, DIMENSION(:), POINTER :: Absorber_Units => NULL() ! J
! Profile LEVEL pressure and LAYER quantities
REAL(fp_kind), DIMENSION(:), POINTER :: Level_Pressure => NULL() ! K
REAL(fp_kind), DIMENSION(:), POINTER :: Pressure => NULL() ! K
REAL(fp_kind), DIMENSION(:), POINTER :: Temperature => NULL() ! K
REAL(fp_kind), DIMENSION(:, :), POINTER :: Absorber => NULL() ! K x J
! Clouds associated with each profile
TYPE(CRTM_Cloud_type), DIMENSION(:), POINTER :: Cloud => NULL() ! Nc
! Aerosols associated with each profile
TYPE(CRTM_Aerosol_type), DIMENSION(:), POINTER :: Aerosol => NULL() ! Na
END TYPE CRTM_Atmosphere_type

The CRTM Components

- · Absorption by atmospheric gaseous constituents, e.g. water vapour, ozone, etc. AtmAbsorption functions.
 - Compact-OPTRAN is currently used.
 - OPTRAN-v7 has been implemented.
 - · OSS has been implemented.
- Scattering and absorption. AtmScatter functions. Aerosols
- Clouds
- Surface Optics. SfcOptics functions.
 - Emissivity (land, ocean; μW, IR; ice, snow, water, etc) · Reflectivity (diffuse and direct)
- Radiative Transfer. RTSolution functions.
- · Fixed- and variable-angle multi-stream models

Developer Interface

- **INTERNAL CRTM Data Structures**
- Not visible via the User Interface
- · Developers modify the structure contents as needed
- · Some components are mandatory and must be supplied; others are algorithm specific.

Description
Gaseous absorption optical depths and related parameters.
Scattering parameters such as single scatter albedo, asymmetry factor, optical depths, etc.
Surface optical properties such as emissivity and reflectivity.

Example: Definition of AtmScatter Structure

<pre>TYPE, PUBLIC :: CRM_AtmScatter_type ! Dimension values INTEGER :: D_Layers = 0 ! K dimension INTEGER :: Max_Degendre_Terms = 0 ! I c dimension INTEGER :: Max_Penser Elements = 0 ! I cluse dimension INTEGER :: m_Phase_Elements = 0 ! I pUse dimension INTEGER :: m_Phase_Elements = 0 ! I pUse dimension ! - Algorithm-specific members REAL(fp_kind), DIMENSION(; :, :), POINTER :: Phase_Coefficie ! - Mandatory members</pre>	ent	=> NULL	0	
REAL(fp_kind), DIMENSION(:), POINTER :: Optical_Depth	=>	NULL()	1	к
REAL(fp_kind), DIMENSION(:), POINTER :: Single_Scatter_Albedo				
REAL(fp_kind), DIMENSION(:), POINTER :: Asymmetry_Factor	=>	NULL()	1	K
REAL(fp_kind), DIMENSION(:), POINTER :: Delta_Truncation	=>	NULL()	1	K
END TYPE CRTM_AtmScatter_type				

The CRTM Shared Data

- Shared Data is the precomputed data that is loaded during the model initialisation. The shared data is loaded into a public data structure that can then be used by application modules
- Shared data is not visible via the User Interface.
- Needed for:
 - · Gaseous absorption functions require regression coefficients (e.g. OPTRAN) or optical depth lookup tables (e.g. OSS).
 - · Surface optics functions require regression coefficients (e.g. IRSSEM) or "hinge point" spectra.
 - · Scattering functions may require the same (e.g. current aerosol absorption/scattering uses channel based coefficients, but will transition to "hinge point" spectra.
- · Getting data into the system is one of the more difficult parts of CRTM development.

Shared Data

Current Shared Data CRTM Data Structures

Type Name	Description
SpcCoeff_type	Channel frequencies, polarisation, Planck function coefficients, etc.
TauCoeff_type	Coefficient data used in the AtmAbsorption functions.
AerosolCoeff_type	Coefficient data used in the AerosolScatter functions.
ScatterCoeff_type	Coefficient data used in the CloudScatter functions.

· Will need the same for surface optics functions to compute surface emissivities/reflectivities.

	TYPE, PUBL
Description	! Dim INTEGER INTEGER
Sensor channel information filled during initialisation.	INTEGER INTEGER INTEGER
Atmospheric state profile data. Contains Cloud and Aerosol structures.	INTEGER INTEGER ! Cli INTEGER ! Abs
Surface type and state	INTEGER, INTEGER,

the requisite		
act on calling		
•		
wable dimensio		
channels; M = n	umber of profiles	

i ype Name	Description
CRTM_ChannelInfo_type	Sensor channel information filled during initialisation.
CRTM_Atmosphere_type	Atmospheric state profile data. Contains Cloud and Aerosol structures.
CRTM_Surface_type	Surface type and state information. Contains SensorData structure.
CRTM_GeometryInfo_type	Earth location, zenith and azimuth angles.
CRTM RTSolution type	Radiative transfer results.

RTSolution)	CRTM_ChannelInfo_type	Sen filleo
	CRTM_Atmosphere_type	Atm Con strue
nality mber of profiles	CRTM_Surface_type	Surf infor Sen
TPUTS	CPTM CoometryInfo type	Eart

GeometryInfo, &

ChannelInfo, &

International TOVS Study Conference, 14th, ITSC-14, Beijing, China, 25-31 May 2005. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2005.