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Abstract 

SSM/I has been applied in derivation of liquid water and precipitation for 
many years. Due to the uncertainty in variance of surface emissivity and 
characters of precipitation, the comparison of rainfall retrieval with ground truth 
remains a controversial issue. In order to investigate this issue, data set for 
precipitation from stratus clouds over ocean area were collected for 5 years. 
Each data set is collocated with satellite observation and ground truth. Neural 
network is applied to estimate precipitation. Comparison between retrieved rain 
rate and surface ground truth was made. Based on the analysis, the wind speed 
does not appear to have close correlation with precipitation. Mean value of 
precipitation is consists with ground truth, but most of the heavy precipitations 
are not captured by the estimation. The best result is obtained by using all 7 
channel observations and polarized corrected temperatures to estimate 
precipitation. 

 
Introduction 
  The SSM/I measurement has been used to retrieve precipitation though 
many different methods. A comparison of several algorithms was presented by 
Marzano (2004). In general, validation of the retrievals over ocean has been 
studied. In this study, we selected rainfall measurement from a small island to 
provide data for ocean condition. Most of the measurements are rainfall from 
stratus clouds with uniform precipitation. A non-linear statistical algorithm – 
neural network is applied in this research. The relationship between rain and 
wind speed was also investigated in this research. 
 
Data 
  Weather station 46695 is located on an island in East China Sea, 60km north 
of Taiwan. Fig. 1 shows the location of this weather station. The period from 
November to March is the northeast monsoon season in Taiwan, with most 
days raining during this period (see Fig. 2 for winter monsoon circulation). 
Raining cloud type is stratus cloud and raining area is more uniform than 
cumulus cloud rain type, unless cold front is coming. Fig. 3 provides an satellite 
image of a typical winter monsoon raining event. SSM/I data for Taiwan from 
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Nov. 2000 to Mar. 2005 were collected. Each co-location of data includes 7 
brightness temperatures of SSM/I channels and surface rain rate estimated by 
Area Time Integration (ATI) method. (Kedem,1990). Polarized Corrected 
Temperature (Spencer, 1989) of SSM/I is also included for consideration in 
precipitation retrieval. 
 

 
 
Fig1. Position of 46695. 

 
Fig.2 Winter monsoon area in East 
Asia. 
 

 
Algorithm 

Neural networks have been used in a variety of meteorological applications. 
An early study by Stogryn et al. (1994) retrieved ocean surface wind speed from 
SSM/I observation based on a neural network technique. Shi (2001) retrieved 
atmospheric temperature profiles from NOAA-15 Advanced Microwave 
Sounding Unit measurements (AMSU) by using neural networks applied to 
regional direct acquisition and global recorded AMSU-A data. Similar structures 
of neural networks as used by Shi (2001) are applied in the current study to 
derive rain rate from SSM/I data. 

Data for the neural network training dataset were divided into groups 
according to the following situations. 1) Rain, no rain, or both; 2) day time, night 
time, or whole day; 3) SSM/I 7 channels; 4) PCT of SSM/I in 3 frequencies; 5) 
surface wind speed; 6) surface temperature. Combination of above parameter 
by different assembly may make a few data sets for Neural Network training.  

Back propagation neural networks are used in developing the retrieval 
scheme. A back propagation neural network is a computer model composed of 
individual processing elements called neurons. A network consists of multiple 
layers of neurons interconnected with other neurons in different layers. These 
layers are referred to as input layer, hidden layer, and output layer. Each layer is 
generally fully connected to the layers below and above. A three-layer network, 
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with one input layer, one hidden layer, and one output layer, is constructed for 
the rain rate retrieval. It is found that using a Gaussian function to propagate to 
from the input to the hidden layer and a logistic transfer function to propagate to 
the output layer gives the best network performance for the type of data studied. 
The definition of the Gaussian transfer function is 

f(x) = exp(-x2),            (1) 
and the definition of the logistic transfer function is  

f(x) = 
)exp(1

1
x−+

.           (2) 

The number of neurons in the hidden layer varies between 40 and 60 and 
the number is adjusted to optimize the performance. The input set includes the 
seven SSM/I channels, three PCT values, and the surface skin temperature. 

Among the collocated patterns, 20% are randomly extracted to construct a 
testing set, and another 20% are randomly extracted and set aside as a 
validation set for later statistical studies. A back propagation network is trained 
by “supervised learning”. The network is presented with a series of pattern pairs, 
each consisting of an input pattern and an output pattern; in random order until 
predetermined convergence criteria are met. At this time the network presents 
the input elements in the testing set and retrieves the output elements. Then the 
retrieved output elements are compared with the output elements in the testing 
set, and the averaged root mean square (rms) errors of all the output elements 
are computed. The network parameters are saved if the averaged rms error is 
less than that computed previously. This process is repeated until no 
improvement is found for a specified number of test trials. The network 
parameters are then saved as the retrieval function. 
 

 
Fig. 3 Most of the winter season, in northeast area of Taiwan is covered by 
cloud and rainfall all day. 
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Analysis 
In the dataset, the surface wind speed is derived by the algorithm of 

Hollinger(1989) from the SSM/I measurement. Liquid water content (LWC) 
estimation was also made from the algorithm of Hollinger (1989). Five-year 
data were used. The comparison between estimated wind speed, LWC and 
surface observations are shown in Fig. 4. Small wind speed has more 
ambiguity distribution. LWC is related to wind speed. High wind speed may 
caused by higher LWC. 

Figs. 5 and 6 show comparisons of estimated precipitation with surface 
observation. Retrieved rainfall data during day with 3 PCT values show that 
estimated precipitation values are less than observed values. Estimated rain 
rate at night has similar characteristics. Retrieval precipitation without PCT 
shows that rain rate is over estimated. 
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Fig.4 Estimated wind speed (left) and liquid water content (right) compare with 
surface observation in past 5 years. 
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Fig. 5 Comparison between estimated precipitation from neural network and 
ground truth data by different data set. 
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Fig. 6 Comparison between estimated precipitation and observation by different 
input data set in neural network.  
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  Whole day data set not classified into day or night has better correlation 
between estimated and observed rain rate. For day and night data sets, the 
correlation between estimated and observed precipitation are less than the 
whole day data set (Table 1). 
 
Table 1. The correlation between estimated and observation using different 
input values of neural network. 
Input data 
set 

Day  
All 

Day 
7TB 

Day 
2PCT 

Day 
PCT85 

Day 
7TB 

Night 
All 

Correlation 0.16 0.255 0.439 0.268 0.367 0.519 

 
  Retrieved precipitation of SSM/I do not appear to be suitable to serve as 
climate data reference. The 5 year data set is not enough to describe the 
variance of precipitation inclination. Table 2 shows the total volume of SSM/I 
data set.  
 
Table 2Total precipitation (mm) from year 2000-2004 
Seasonal 2000 2001 2002 2003 2004 
Ground obs. 652.5 432.1 390.5 460.3 670 
No of Sat day 20 44 103 106 94 
Est. Rainfall 203 234 746 799 661 
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Fig.7a Year 2000-2001         Fig.7b Year 2001-2002 
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Fig.7c. Year 2002-2003         Fig.7d. Year 2003-2004 
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Fig 7e. Year 2004 to 2005.          Fig. 8 Upper black line is wind speed, 

middle blue line is LWC, bottom r
line is precipitation. Data are from
NO

ed 
 

V/2000 to MAR/2005, 
 
   In fig. 7, surface precipitation values are plotted as blue column and 
estimated precipitation values are plotted as red column for each winter season 
from 2000 to 2004. Most of the heavy rainfall data appear not to be captured. 
Because of the large time gaps between each satellite observations in a day, 
the correlation between hourly rain rate from satellite and 24 hours precipitation 
needs further investigation. The bias of wind speed retrieval is very correlative 
to LWC and it has little correlation with rain rate. 
 
Conclusion 
  Over the 5 years analyzed, retrieved precipitation from SSM/I using neural 
network provides a reasonable estimates for all day whole weather condition, 
However, the extremely precipitations were not sufficiently identified in the 
retrieval. Generally speaking retrieval rain rate from satellite is smaller than 
ground truth. Because of the satellite path passes over one location only twice a 
day, it may have missed many rainfalls during a day. Taking the mean value of 
satellite retrieved rain rate to obtain a day’s precipitation needs further 
investigation. 
  Rainfall retrieval by neural network over all day’s ocean area is the best one. 
If data set is divided as day and night two parts, the bias increases. The bias of 
estimated rain rate increases with rain rate. The correlation between hourly rain 
rate from satellite and whole day’s precipitation need further investigation. The 
bias of wind speed retrieval is very correlative to LWC but it is not so much 
correlation with rain rate. Retrieved surface wind speed is higher estimated 
than ground truth about 5 m/sec. The difference is larger with higher wind 
speed and LWC. For this small island station, it is not clear how much the local 
Land Ocean thermal wind has on precipitation. 
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