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1. Introduction 
At the middle of 1999, National Satellite Meteorological Center (NSMC) of China Meteorological 

Administration (CMA) made the real time HRPT/ATOVS data receiving and processing in operational. 

The HRPT data obtained from the 3 ground stations of Beijing, Guangzhou and Urumqi as shown in 

Figure 1 are sent to the NSMC in real time. The HRPT/ATOVS data processing system was built based 

on the AAPP and ICI/IAPP processing packages in which the AAPP is used for ATOVS data 

preprocessing and the ICI/IAPP are used for temperature and moisture profiles retrieving. Some 

adaptations were made for the AAPP and ICI/IAPP according to the situation of NSMC.  

In order to more easily check if the ATOVS products are correct, the PC-ATOVS displaying system has 

been developed, and the collocations and validations of the sounding products have been made as well. 
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Fig. 1 The receiving coverage for the 3 HRPT stations of NSMC, CMA, China 

 

The progress of ATOVS data applications has been made for recently years, such as, typhoon and 

rainstorm monitoring, variational assimilating, atmospheric temperature and moisture profiles 

analyzing and so on. It is obvious that more and more meteorologists in China will take account of 

ATOVS data into their NWP model and weather analyzing and forecasting. 
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Section 2 shows the outline of ATOVS operational processing system. Section 3 introduces the 

validation of ATOVS sounding products. Section 4 gives examples of ATOVS data applications at 

CMA. The summary will be given at the end of our paper. 

 

2. Outline of ATOVS Processing System 
Figure 2 illustrates a flow chart of the ATOVS operational processing system at NSMC. From it we 

can see that ATOVS operational processing system is comprised of 3 primary subsystems, those are 

satellite navigating, preprocessing, and retrieval. The processing system is developed on UNIX system. 

The validation and display subsystems are developed on PC-Windows. 

The satellite navigation subsystem is running daily at specified time. The preprocessing and retrieval 

subsystems are running for each orbit. And distributions of ATOVS products to users have been done 

immediately after generated. At present, the validation and display of ATOVS products are done on the 

PC, they are not running every day.  

2.1 Satellite Navigation 

The satellite navigation subsystem has been built based on a part of AAPP and the situation of NSMC. 

The major input data is TBUS bulletin issued by NOAA/NESDIS and obtained from the GTS. The 

major output file is the so-called SATPOS file and used for ATOVS/AVHRR earth location. This 

subsystem is running daily on the server of HP system.  

2.2 Preprocessing 

The preprocessing subsystem has been built based on the AAPP. Some adaptations were made 

according to the situation of NSMC. For the AAPP, it is designed for processing ATOVS /AVHRR 

data received from a single HRPT station. However, there are 3 HRPT stations at NSMC, and the 

position and coverage for them are shown in Fig.1. From that, it can be seen that the data received from 

Beijing and Guangzhou stations are normally in the same orbit. When the two pass files from the two 

stations are sent to NSMC, and they are jointed into one file. So the modification must be made 

according to the coverage of two joined stations. This subsystem is running in real time after the new 

HRPT data file available on the HP server. 

2.3 Retrieval 

The ATOVS retrieval subsystems have been built based on ICI and IAPP. Some adaptations were made 

according to the situation of NSMC. Before 2003, the ATOVS sounding products are generated using 

ICI. After that, they are generated using IAPP. 

2.3.1 ICI 

For ICI, the major modification is about creating initial guess rolling library. The analyses of regional 

NWP model HLAFS (High-resolution Limited Area Forecasting System) of the National 

Meteorological Center (NMC) of CMA are utilized to create a rolling library over the last ten days at a 

zone of 10ºby 10º.The HLAFS covers area of 5--64ºN and 55—145ºE and provides 4 times analyses 

per day with spatial resolution of 1ºby 1º and vertical resolution of 14 levels up to 50 hPa for 
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temperature and 8 levels up to 200 hPa for relatively humidity. The HLAFS is running based the T106 

NWP model. At the beginning of 2003, the T106 is updated by the T213, since then the HLAFS is not 

available, therefore the ICI retrieval system is terminated. 

The retrieval processing for the ICI is based on a field-of-array (BOX) containing 2 by 2 adjacent 

HIRS/3 FOVs. So the spatial resolution of sounding products is about 50km. The temperature profiles 

were derived with the data from the AMSU-A and HIRS instruments, and the moisture profiles were 

derived with the data from AMSU-B and HIRS instruments.  

 

Fig. 2 A flow chart of the HRPT/ATOVS data operational processing system at NSMC 

 

2.3.1 IAPP 

Regression retrieval is selected for the first guess profile. The retrieval processing for IAPP is based on 

a field-of-array (BOX) containing 3 by 3 adjacent HIRS/3 FOVs. In order to make higher resolution of 

retrievals, a retrieval BOX was selected with 2 by 2 HIRS/3 FOVs instead of 3 by 3. Same as ICI, the 
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temperature profiles were derived with the data from the AMSU-A and HIRS instruments, and the 

moisture profiles were derived with the data from AMSU-B and HIRS instruments. 

2.4 ATOVS Data Distribution  

ATOVS operational products are distributed to users at the conclusion of orbital processing, which 

takes about 10 minutes, with a complete orbit spanning about 15-20 minutes. The operational products 

that are routinely distributed to users include: 

z ATOVS L1C data (AMSU-A, AMSU-B, HIRS) 

z ATOVS L1D data (AMSU-A, AMSU-B, HIRS) 

z ATOVS sounding products 

There are two dedicated links to distribute these data to users out of NSMC: 

z NSMC Æ NMC / CAMS users 

z NSMC Æ CMA users (9210 net work) 

For the NSMC users, the AMSU-A and AMSU-B L1C data are available in real time, which are 

directly used for monitoring the typhoon, rainstorms, etc. For NMC and CAMS (Chinese Academy of 

Meteorological Sciences) users, the AMSU-A, AMSU-B and HIRS L1D data are available on time for 

applying to the variation assimilation system in NWP models. For CMA users, the temperature and 

moisture soundings are available in near real time for analyzing. 

 

3. Validation of ATOVS Sounding Products 
The sounding products produced by ICI and IAPP are validated with the radiosonde data, respectively. 

The collocations are made between the radiosonde and ATOVS soundings. A matched radiosonde and 

satellite sounding sample is compiled if the candidate radiosonde and satellite sounding data: 

z are within specified time (6 hours) and distance (1º) windows 

z differ by less then 10K for each temperature level (1000 --10 hPa) 

z have similar surface 

The primary validation strategies consist of 

z vertical profile comparison 

z vertical accuracy statistics 

z horizontal field analysis 

3.1 Vertical Profile Comparison 

The vertical Profile comparisons were made among the radiosonde, ATOVS retrievals and 

corresponding first guess. The two typical stations were selected for Beijing (in the median region) and 

Guangzhou (in the tropic region). Figure 3.1 shows the comparisons of the IAPP retrievals and 

radiosondes for Beijing and Guangzhou. In the comparisons, the retrievals were made from NOAA-16 

data around 18UTC of July 23 of 2002, the radiosonde data at the 12/24 UTC of July 23 of 2002. In the 

figures, the right side is temperature profile, the left side is the dew point temperature profile.  
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Fig. 3.1  Comparisons of the IAPP retrieval and corresponding first guess with radiosonde 

data for Beijing (top) and Guangzhou (bottom) from NOAA-16 ATOVS data at around 

18UTC of July 23 of 2002 (right side is temperature, left side is dew point temperature, 

sold line is radiosonde, dash line is first guess, dot and dash line is retrieval) 

 

Same as Figure 3.1, Figure 3.2 shows the comparisons of the ICI retrievals and corresponding first 

guess with radiosonde for Beijing and Guangzhou. 

From the comparisons, we can see that the temperature retrievals from both of IAPP and ICI are quite 

close to the rediosonde, but for dew point temperature, the IAPP is better than the ICI, especially for 

Beijing. 

3.2 Vertical Accuracy Statistics 

The vertical accuracy statistics based on satellite minus radiosonde differences were computed from 

the collocations for NOAA-16 at the period of July in 2002. The statistics were made from total 

collocations which include the types of land and sea, and clear and cloudy and the coverage of 

collocated data shown in the Fig.1. 

Figure 3.3 shows the statistics of temperature (top) and relatively humidity (bottom) for the IAPP 

retrieval and first guesses from NOAA-16 at the period of July in 2002. The total collocations are about 

10000 samples.  
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Fig. 3.2  Same as Fig.3.1, but for ICI retrieval and corresponding first guess (right side is  

temperature, left side is dew point temperature, sold line is radiosonde, dash line is first 

guess, dot and dash line is retrieval) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.3 The statistics for temperature (top) and relatively humidity (bottom) for IAPP retrievals 

and corresponding first guess from NOAA-16 at the period of July in 2002 (sold line for 

IAPP retrievals, dash line for first guess, the left side is bias, the right is RMS (total 

samples are about 10000)) 
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Fig.3.4  Same as Fig.3.3, but for ICI retrievals and corresponding first guess (total  

samples are about 8000) 

 

Similarly, Figure 3.4 shows the statistics of temperature (top) and relatively humidity (bottom) from 

the ICI retrievals and corresponding first guesses for the same situations as in Figure 3.3. But the total 

collocations are about 8000 samples. 

From these figures, it can be seen that the root mean square (RMS) accuracies of temperature retrievals 

for both IAPP and ICI are about 2-2.5K. But for relatively humidity, the IAPP is better than the ICI, the 

IAPP is about 15-20%, while the ICI is about 20%. 

3.3 Horizontal Fields 

Horizontal field analysis provides better meteorological context concerning the characteristics of the 

derived satellite products than the vertical accuracy statistics, and is an important component of the 

product validation function. 

Figure 3.5 illustrates examples of temperature (ºC) and water vapor mixing ratio (g/kg) analysis over 

the region around China for the level of 500 hPa from NOAA-16 ATOVS retrievals produced by IAPP 

at time 18-22UTC of July 23 in 2002. The background image is made from HIRS/3 channel 8 

brightness temperature. The corresponding water vapor image made from AMSU-B channel 3 

brightness temperature is shown in Figure 3.6.  

Based on the analysis fields and corresponding images, it can be seen that the analysis fields and the 

patterns of clouds and water vapor have a good consistent, thus, it indicates that the ATOVS sounding 

products are reasonable. 

 

  

International TOVS Study Conference-XIV Proceedings

596



 

Fig. 3.5 Example of temperature (ºC) and water vapor analysis over the region around China 

for the level of 500 hPa from NOAA-16 ATOVS retrievals produced by IAPP at time 

18-22UTC of July 23 in 2002 (red line is temperature, green line is water vapor mixing 

ratio (g/kg*10)  

 

.  
Fig. 3.6  Example of water vapor image over the regional around China from NOAA-16 

AMSU-B channel 3�183±1GHz�brightness temperature at time 18-22UTC of July 23 

in 2002.(dry air in yellow /dark yellow, wet air in green) 

 

4. Examples for ATOVS Data Applications 
The progress of ATOVS data applications has been made for recently years, such as, the AMSU-B L1C 

data are directly applied to monitor routinely the typhoon, rainstorm at NSMC, the ATOVS L1D data 

are applied to the variation assimilation system of NWP models at the several centers of CMA, the 

ATOVS the atmospheric temperature and moisture profiles are used in the case study of weather 

analyses and so on. Here we just show the two examples of ATOVS data applications at CMA. 

4.1 Applications of ATOVS Radiances in NWP System 

During the past several years, NSMC made cooperation with the Research Center for Numerical 

Meteorological Prediction (RCNMP) of Chinese Academy of Meteorological Sciences (CAMS) to 
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study a direct assimilation of ATOVS radiances in GRAPES/3DVAR system. The ATOVS radiances 

are processed at NSMC using AAPP. It is very clear that there is improvement on forecast by the 

impact of these data. The following example shows the trace of WeiMaXun typhoon developing and 

landing to Korea during July 4-6 of 2002. The experiments of the model configuration are as follows: 

z assimilation model: GRAPES/ 3DVAR 

z forecast model: WRF�Weather Region Forecast� 

z Background: T213 

The experiments include two tests:  

Test 1:  radiosonde data only 

Test 2:  radiosonde data + ATOVS/AMSU-A radiances  

Figure 4.1 shows the geopotential height fields for 850 hPa at 15UTC of July 4 in 2002, which are 

generated from Test 1(left) and Test 2 (right), respectively. From these analysis fields, we can see that 

there are some differences. 

Figure 4.2 is the analysis geopotential height field for 850 hPa at 00Z of July 6 in 2002 produced by the 

T213 operational system. 

Figure 4.3 shows the 45 hour forecast geopotential height fields for 850 hPa at 00Z of July 6 in 2002 

produced according to Test 1 and Test 2, respectively. Comparing the 45 hour forecasts with T213 

analysis, it is clear that the forecast of center position is improved about 200-300 km for the 45 hour 

forecast produced according toTest2. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 The analysis geopotential height fields for 850 hPa at 15UTC of July 4, 2002 which are 

generated from Test 1(left) and Test 2 (right) and used for 45 hour forecast, respectively  
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Fig. 4.2 The analysis geopotential height field for 850 hPa at 00Z of July 6 in 2002 produced by 

the T213 operational system (the center position at 39N,130E) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 The 45 hour forecast geopotential height fields for850 hPa at 00Z of July 6 in 2002 

which are produced based on Test 1 (left: the center position at 37.5N,127.3E) and Test 

2 (right: the center position at 38.7N,130.2), respectively . 

 

4.2 Applications of ATOVS Sounding Products in Synoptic Analysis 

During Jun 20-24 of 2002, a heavy rainstorm was occurred in the region of Changjiang valley. It was 

reported that the rainstorm was caused by sequence 3 middle α convective scale (MαCS) air mass 

based on the analysis from several kinds of data. Figure 4.4 shows the total precipitation for 20-24 of 

Jun 2002 (left top). 

When the third MαCS is grown up mature phase at 18UTC of June 22, it is fairly from the ATOVS 

temperature and moisture fields that there were a cold air core at low level, a wet air belt at middle 

level, and a warm air core at upper level in the MαCS air mass (see Fig 4.4) These results are consistent 

with the characteristics of middle convective scale (MCC) described by Maddox in 1983. 
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Fig. 4.4 Total precipitation during 20-24 Jun 2002 (left top) and temperature and water vapor 

analysis fields at 850hPa(right top), 500hPa(left bottom), and 300hPa (right bottom) 

from the IAPP ATOVS sounding products. In the Figures, the sold line is Temperature 

(ºC), the dot line is water vapor mixing ratio (g/kg),the shadow area is MαCS. (provided 

by QinDanyu) 

 

5. Summary 
Since the middle of 1999, the National Satellite Meteorological Center (NSMC) of China 

Meteorological Administration (CMA) has been receiving and processing the HRPT/ATOVS data in 

operational. The ATOVS data processing system has been built based on the AAPP and ICI/IAPP. The 

PC-ATOVS display systems were developed by using IDL and C++ languages for checking the 

ATOVS radiance and sounding products, respectively. The validations of the sounding products 

generated by the ICI and IAPP were made, respectively. The accuracy of temperature for both ICI and 

IAPP are similar as about 2-2.5K(RMS), the accuracy of moisture is about 15-20%, and the IAPP is 

better than ICI. The progress of ATOVS data applications has been made for recent years, especially 

for the application of the ATOVS radiance data in NWP variational assimilation model. 
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