Recent Validations of infrared and microwave forward models at LMD/IPSL

R. Armante, V. Cappelle, N.A. Scott, N. Jacquinet, A. Chédin

Objectives of the validation

With recent and future satellite measurements, (TOVS, ATOVS, AIRS/AMSU/Aqua, IIR/Calipso, IASI/AMSU,Metop, ...) forward modeling requires more and more attention (1-D var, 4-D var, reanalysis, ...)

- forward models (brightness temperatures, transmittances, jacobians) and spectroscopic databases need to increase their precision.
- residuals between observed and calculated models have to be clearly identified and corrected

Validation scheme

Forward model computing suite at LMD

Used in this study :

→ Forward models :

Stransac genuine line-by-line and layer by layer model (IR and MWV)

4A : 2nd generation line-by-line and layer by layer model

→ Spectroscopic database: GEISA-2003

More details on the poster (Thursday, 13h:14h30) Water vapor, O2, N2,continua, CFCs profiles (cfc11, cfc12, Ccl4), Line-coupling, Emissivity spectrum

The validation suite: Example for AIRS/AMSUs/AquaAIRS

(AIRS/AMSU data (11b) automatically desarchived from NASA/GSFC on a daily basis) April 2003 → « today »

The validation suite: Example for AIRS/AMSUs/Aqua

T and H_2O from radiosoundings

No fit of O_3 , N_2O , CO, CH_4 , Ts and Surface Emissivity

Sea, Night (between April 2003 to March 2006, 2000 collocations)

« Windows » : channels 1,2,3,4 and 15

Emissivity over sea

Overview of existing validation datasets

Name	Date/loc.	Obs.	Instruments	Comments
UWITRA90 CAMEX I	 Apr. 86, Oct/Nov 88, March 92, US Sept 93, US 	Plane or g.b.	HIS + radiosondes	Available on HIS validation dataset website
THORPEX	Fev/Mar 2003 Hawaii	Plane	SHIS, NASTI + radiosondes	All data are compiled and freely available on a website
IASI- BALLOONS	March 2001 Aug. 2002 Kiruna (Sweden)	Balloons	IASI-balloons spectra + Atm. soundings	Available on ETHER website after registration <u>BUT</u> : no ISRF available
EAQUATE	Sept 2004 UK + Italy	Plane + g.b.	SHIS, NASTI, BOMEM + radiosondes	Some data (which one?) available on FAAM website, after providing details on the research
AVE 2004/2005	Oct/Nov 2004 June2005 Houston TX	Plane + sat.	SHIS, AURA + AQUA prod. + atm. Properties ?	Restricted to participants and contributor to Aura validation
WINTEX	Mar/Apr. 1999 USA/Canada	Plane + g.b.	AERI, SHIS, NASTI, MAS +LIDAR, radiosondes	On FAAM website after request (which data?)

Overview of existing validation datasets

Name	Date/loc.	Obs.	Instruments	Comments
ADRIEX	Sept 2004 Northern Italy	Plane	SHIS, NASTI + atm. Properties?	On FAAM website after request (which data?)
AFWEX (ARM/FIRE Wator vapor Experiment)	Nov/Dec 2000 Oklahoma US	Plane + g.b.	SHIS, NASTI, radiosondes, LIDAR	 LIDAR, water vapor, GPS, CM sondes, etc available on ARM website SHIS and NASTI not available
MPACE	Sept/Oct. 2004 Alaska	Plane + ?	SHIS, LIDAR, radiosondes	LIDAR data available on ARM websiteNo link found to other data
FIRE.ACE/ SHEBA (Artic cloud exp.)	Apr/July 98 Alaska US	Plane + g.b +sat	Radiance + several atm. Properties	Data available on Nasa Langley website after (only?) registration
CLAMS	Jul/Aug. 2001 US East coast	Plane + g.b +sat.	SHIS, MODIS, MAS Radiosondes	Except SHIS, data available on Nasa Langley website after (only?) registration
CAMEX III	Aug./Sep 98 Andros Island	Plane + g.b.	AERI, NASTI, MAS, MIR + radiosondes, LIDAR	 All data are available on GHRC webpage, after registration (not tested) Some data available on CIMSS website
CAMEX 4	Aug./Sep 98 Andros Island	Plane + g.b +sat.	MAS, MIPS, radiosondes + several atm. Properties	All data seem to be available on GHRC webpage, after registration (not tested)

THORPEX dataset (SHIS)

- SHIS upwelling radiance data collected around Hawaiian Island between 21 February and 15 March 2003 on board ER-2 (altitude of 20km).
- Temperature and water profile measured by dropsondes released at 13km by G-4.
- The 03 March is used here as it is considered as clear-sky measurements. Measurements are performed during day-time.
- Data are freely available on: http://thorpex-data.ssec.wisc.edu/

EAQUATE dataset (BOMEM)

- 38 down looking BOMEM spectra collected on 6-10 Sept 2004, in Italy between 7 pm and 2 am.
- At each spectrum correspond temperature and water profiles.
- Other trace gases have been set according to the climatology (AFGL 2 mid-latitude summer atmosphere).

Preprocessing: Example on THORPEX dataset

- 1. Select among the 286 spectra, those that are not contaminated by cloud.
 - Remains 192 similar spectra, with an STD < 0.5K
- 2. Atmospheric profiles are extended to SHIS²/_e observing altitude by merging the top with the profiles measured at Lihue
- 3. ground-based station.
- 4. Concentrations in CO2, N2O and CH4 are taken from the daily data of the WDCGG (<u>http://gaw.kishou.go.jp/wdcgg/station.html?</u>).
- 5. CO set to fit the data in the range 2080-2200cm⁻¹
- 6. O3 taken from the climatology
- Surface emissivity (assumed to be a constant) and skin temperature are set to fit the data.

Cloud top pressure

Upwelling Radiances

SHIS: THORPEX (03 March 2003)

Upwelling radiance: Comparison calc – obs: 580-1080cm⁻¹

 Average residual obtained using 4 measured atmospheric profiles (T + H2O) + STD of the 4 residuals.

Upwelling radiance: Comparison calc – obs: 580-1080cm⁻¹

In green: error related to data; in blue: error related to the model

Upwelling radiance: Comparison calc – obs:1080-1800cm-1

- Average residual (red) + STD of the 4 residuals (green).
- In green: error related to data; in blue: error related to the model

Upwelling radiance: Comparison calc – obs:1800-3000cm⁻¹

- Average residual (red) + STD of the 4 residuals (green).
- In green: error related to data; in blue: error related to the model

Downwelling Radiances

BOMEM: EAQUATE, Italy (September 2004)

Downwelling radiance: Comparison calc – obs : 600-1080cm⁻¹

Downwelling radiance: Comparison calc – obs : 600-1080cm⁻¹

Average residual (red) + STD of the 38 residuals (green).

In green: error related to data; in blue: error related to the model; in red: source of error not clear.

Downwelling radiance: Comparison calc – obs :1080-1800cm⁻¹

- Average residual (red) + STD of the 38 residuals (green).
- In green: error related to data; in blue: error related to the model.

Summary

- Globally low residuals, especially in case of upwelling radiance (atmosphere need to be well known at very high altitude for the downwelling radiance).
- Very difficult to associate good radiometric measurements with a good knowledge of the thermodynamical parameters :
- atmospheric profile (Temperature and water vapor, O₃, N₂O, CO, CH₄, CFCs)

- surface properties (emissivity and surface temperautre

Perspectives

New improvements are already added :

- Introduction of the solar contribution
- Surface emissivity can vary with wavenumber
- Introduction of aerosol contribution (under development)
- Limb view geometry
- Or in progress :
 - CO2 spectral line shapes have to be improved (especially in the range 700-780cm⁻¹).

Line mixing in CO2 P/R branches is currently introduced in the model (hartmann, priv. comm. 2006)

Improve climatology of CO, CFCs, etc.

Since early 2000, latest releases of 4A are maintained by Noveltis (4A/OP2006 available under request on <u>http://www.noveltis.net/4AOP/</u>) → See poster session, Thursday, 13h-14h30 International TOVS Study Conference, 15th, ITSC-15, Maratea, Italy, 4-10 October 2006 Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2006.