Satellite Infrared Radiance Validation using the NAST-Interferometer

A. Larar^a, W. Smith^{b,c}, D. Zhou^a, X. Liu^a

^aNASA Langley Research Center, Hampton, VA ^bHampton University, Hampton, VA ^CUniversity of Wisconsin, Madison, WI

International TOVS Study Conference (ITSC-XV) October 5, 2006, Maratea, Italy

- Motivation
- Instrument systems & datasets
- Validation methodology
- Select spectral radiance comparison results
- Summary & conclusions

Motivation for satellite sensor cal/val and benefit from using airborne sensors

SD

- Post-launch validation activities are critical to verify quality of satellite measurement system
 - Sensor, algorithms, and direct/derived data products
- Resulting data contribute toward essential cal/val activities
 - On-orbit sensor performance verification & calibration validation
 - Algorithm validation
 - Direct and derived data product validation
 - Long-term monitoring of system performance (radiance & geophysical)

Aircraft underflights fundamental to validation task

N

The NAST & SHIS Systems

✓Validation tools
✓NPOESS risk mitigation

- ✓ Airborne science

IPO NOAA DoD NASA

LaRC MIT/LL UW/SSEC

ER-2

AST

✓ Engineering testbeds

<u>Instruments</u>

IR Interferometer (NAST-I)

Spectral Range: 3.5 - 16 microns Spectral Res.: 0.25 cm-1 ($v/v\delta > 2000$) Spatial res.: 130m/km flight alt. A/C platforms: ER-2, Proteus, WB-57 (soon)

Microwave Radiometer (NAST-M)

Spectral Regions: 50 - 60 GHz, 113 - 119 GHz, 183 GHz, 425GHz A/C platforms: ER-2, Proteus, WB-57 (soon)

IR Interferometer (S-HIS)

Spectral Range: 3 - 17 microns Spectral Res.: 0.5 cm-1 ($\nu/\nu\delta$ > 1000) Spatial res.: 100m/km flight alt. A/C platforms: ER-2, Proteus, DC-8, WB-57

Characteristics of Aqua Sensors Utilized

Three consecutive MODIS scans, each consisting of ten 1-km lines. Partially overlapping scans at off nadir angles causes "bow tie" effect.

<u>Instrument</u> <u>system</u>	<u>Sensor type</u>	Spectral extent	<u>Spectral</u> <u>resolution</u>	<u>Nadir</u> <u>IFOV</u>	<u>Platform</u>
AIRS	Grating spectrometer	3.8 – 15.4 μ, discrete channels	~ 0.4 – 2.2 cm ⁻¹ , υ/δυ ~ 1200	~ 13.5 km	AQUA
MODIS	Grating spectrometer	$\begin{array}{l} \textbf{3.6-14.4} \ \mu \ (IR \\ bands \ \textbf{20-36}) \ , \\ \textbf{discrete} \\ \textbf{channels} \end{array}$	~13 – 128 cm ⁻¹ , broadband filters	~ 1 km	AQUA

NAST Participation in EAQUATE (European **AQUA Thermodynamic Experiment):**

International collaboration to validate radiance and geophysical products obtained by the Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite

UK Met Office BAe 146-300

HUNGARY ROATIA otenza ean Sec 8° ETTINIS

Ground sites: Potenza/Naples (lidar, radiosondes, aeri, m-wave)

Italian Campaign (Naples, <u>Italy, 3 – 11 Sept. 2004)</u>:

[Note: \checkmark => data used in present analysis]

United Kingdom (Cranfield <u>UK, 11-19 Sept. 2004)</u>:

UK BAE146-300 (ARIES, TAFTS, SWS, MARSS & Deimos: dropsondes: insitu cloud phys. & trace species)

• US Proteus Aircraft

✓ *NAST-I*: 3.5-16 µm, 0.25 cm⁻¹ NAST-M: 50-425 GHz (29 channels) ✓ S-HIS: 3.0-17 µm, 0.50 cm⁻¹ **FIRSC:** 225-1000 µm, 0.1cm⁻¹ **μMAPS:** 4.5-4.9 μm, (3 channels)

Radiance Inter-comparison

Approach

- Incorporate multiple, independent, temporally- & spatially-coincident sp datasets from the recent EAQUATE field campaign
 - <u>Satellite:</u>
 - AQUA (AIRS & MODIS)
 - <u>Aircraft:</u>
 - Proteus (NAST-I & S-HIS)
 - BaE-146 (dropsondes)
 - <u>Ground:</u>
 - Potenza (lidar & radiosondes)
 - <u>"Model":</u>
 - ECMWF (T, q, O_3)
- Verify spatial co-registration by comparing geo-referenced images at select λ
- LBL-based calculations for simulated radiance observations
 - Using various combinations for atm state "truth" data (i.e. ECMWF, radiosondes, 2 independent Raman LIDAR systems, & dropsondes
- For clear, uniform regions over ocean and coincidence with ground site, compare high resolution spectra (i.e. NAST-I, S-HIS, AIRS, & "simulations")

SD

Evening; Potenza racetrack

September 7,8 2004 Italy ✓

Night;

Aqua

nadir

September 8, 2004 Italy

Day; w/ BAe-146; both a/c at same z for segment

Satellite Infrared Radiance Validation using the NAST-Interferometer, Larar et al., ITSC-15, Maratea, Italy, 5 October, 2006.

w/ BAe-146

EAQUATE 090704

SD

2500

2500

NIBSI Stadev
(AIRS IFOVs)
max = 0.22 K

min = 0.05 K

mean = 0.11 K

stdev = 0.05 K

Satellite Infrared Radiance Validation using the NAST-Interferometer, Larar et al., ITSC-15, Maratea, Italy, 5 October, 2006.

NAST-I S-HIS

AIRS

1000

1500

2000

EAQUATE 090904

20 240 260 280 220 240 260 280 220 240 260 280 220 240 260 280 220 240 260 280 220 240 260 280 220 240 260 280 Satellite Infrared Radiance Validation using the NAST-fitter ferometer, Larar et al., ITSC-15, Marates, Italy, 5 October, 2006.

EAQUATE 091404

Spectra Comparison: NAST-I, S-HIS, AIRS

MB31 (11 micron LW Win)

MB31 stddev (AIRS IFOVs)

max = 0.23 K	
min = 0.07 K	
mean = 0.16 K	
stdev = 0.05 K	

Regi	on	for	Sp	<i>becti</i>	ra		
Comparison:							

NAST-I, S-HIS, AIRS

Simulation vs measured:

Measured vs measured:

RSS (meas-sim radiance residuals) shown for portion of 090904 NAST flight track

- Post-launch validation activities are critical to verify quality of satellite *LaRC* measurement system (i.e., sensor, algorithms, and direct/derived data *sp* products)
- Very favorable spectral radiance inter-comparison results obtained between AIRS and NAST-I, S-HIS, and simulations based upon groundbased lidar, ECMWF reanalysis fields, and radiosondes
- Spatial and temporal coincidence between observing systems crucial to differentiate between measurement uncertainty and geophysical field variability
- Airborne high resolution FTS systems enable (very-well-calibrated) emulation of other high-resolution and broadband IR instrument systems, offering a unique advantage for and critical component to s/c sensor cal/val
 - coincident a/c FTS observations provide best match to s/c AIRS measurements
 - airborne assets can enable cal/val <u>anywhere</u>, unlike fixed-location ground sites
- EAQUATE data are proving to be very useful for current AIRS direct/derived data product validation, and should serve to further refine methodologies for future advanced sounder (e.g. IASI & CrIS) post-launch validation activities

International TOVS Study Conference, 15th, ITSC-15, Maratea, Italy, 4-10 October 2006 Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2006.