
INSAT Satellite : Current status and Future Prospects

Devendra Singh Department of Science and Technology Technology Bhawan, New Delhi INDIA

Indian Space Programme for Climate Observations

- Payload and Satellite: Design & Fabrication
- Launch (Design, Fabrication & Launch):
 - » Polar: Operational
 - » Geostationary: Operational
- Retrievals
- Applications with Users

Indian Missions for Weather & Climate Studies : Current & Future

INDIAN NATIONAL SATELLITE (INSAT) FOR METEOROLOGICAL APPLICATIONS

INSAT -1 : Geostationary Satellite Series

Satellite	Launch Date	Met. Payload with Wavelength Bands	Major Applications
INSAT-1A	10 April 1982	Very High Resolution Radiometer (VHRR) Visible 0.55-0.75µm IR 10.5 - 12.5µm	 Monitoring cyclones & monsoon CMV Winds OLR Rainfall Estimation
IN SAT-1B	8 August 1983	-do-	-do-
INSAT-1C	22 July 1988	-do-	-do-
IN SAT-1D	12 June 1990	-do-	-do-

INSAT -2 : Geostationary Satellite Series

Satellite	Launch Date	Met. Payload with Wavelength Bands	Major Applications
INSAT-2A	10 July 1992	Very High Resolution Radiometer (VHRR)	 Monitoring cyclones & monsoon CMV Winds
INSAT-ZA	10 JULY 1992	Bands 0.55-0.75 µm & 10.5 - 12.5µm Very High Resolution Radiometer (VHRR) Bands	• OLR
INSAT-2B	23 July 1993	: 0.55-0.75 μm &10.5 - 12.5 μm	 Rainfall Estimation Mesoscale features
INSAT-2E	April 1999	VHRR : As above + WV Bands : 5-7.1 μm CCD : Bands : 0.63 - 0.79 μm 0.77 - 0.86 μm	 Flood/intense precipitation advisory Snow detection
		1.55-1.70 um	

Location of INSAT-2E : 83°E

INSAT 2E - CCD

Detectors	Spectral Bands (µm)	Spatial Resolution
Visible (Vis)	0.63-0.68	1 Km
Near Infrared (NIR)	0.77-0.86	1 Km
S W Infrared (SWIR)	1.55-1.7	1 Km

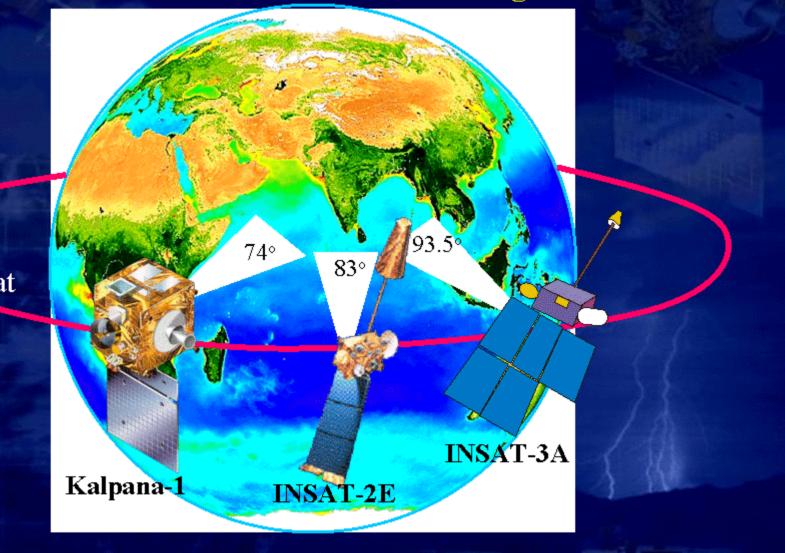
INSAT-3A & Kalpana-1 (2003)(2002)

Location

: INSAT 3A : 93.5°E Kalpana-1: 74°E

Payload

- : (i) VHRR & CCD camera in INSAT 3A (ii) VHRR in Kalpana-1
- VHRR Bands (µm)
 - Visible : 0.55 - 0.75 - Water vapour : 5.70 - 7.10
- •


- Thermal Infra Red : 10.5 - 12.5 Resolution (km) : 2 X 2 for Visible 8 X 8 for WV & TIR

- CCD Camera Bands (µm) •
 - : 0.62 0.68 Visible
 - Near Infra Red : 0.77 0.86
 - Short Wave Infra Red : 1.55 1.69

Resolution (km) : 1 X 1 for all bands

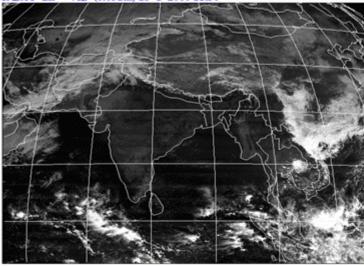
Current Geostationary Meteorological Satellites the South and South West Asian Region

Meteosat 63°E

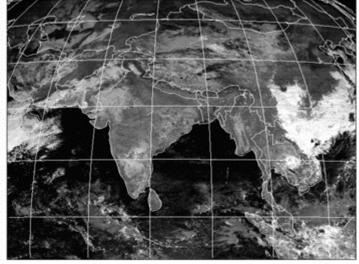
INSAT-3A

IR, 15 Oct 2005

WV, 15 Oct 2005

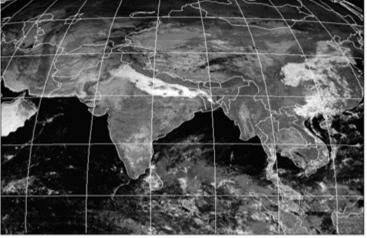

UV_BOND

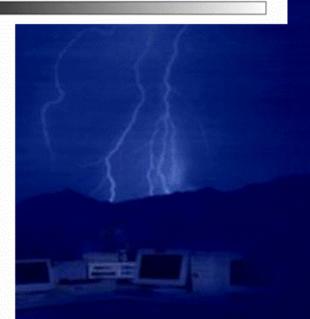
INSAT 34 BACKUP 15-0CT-03 00:002 IMDPS IND NEW DELH INSAT3A MET_WV_ENH

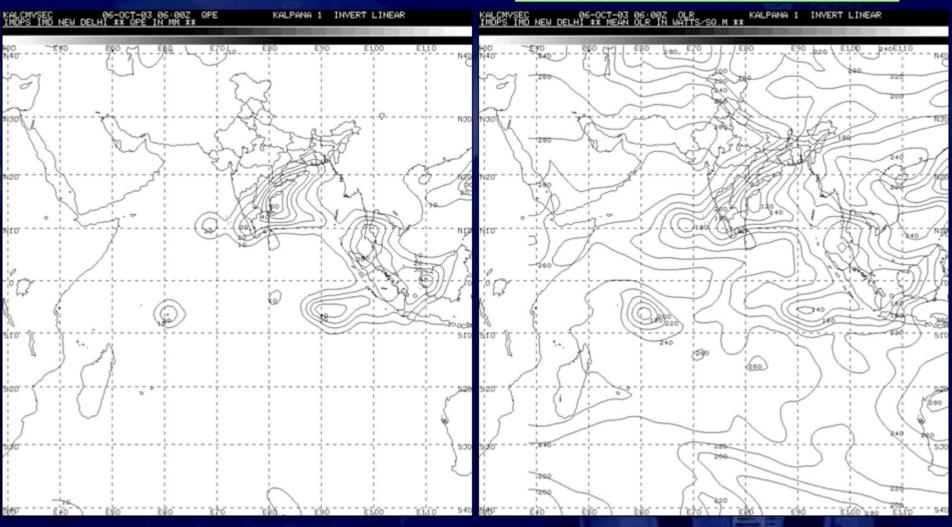

Kalpana-1 Vis 19 Sep 2005

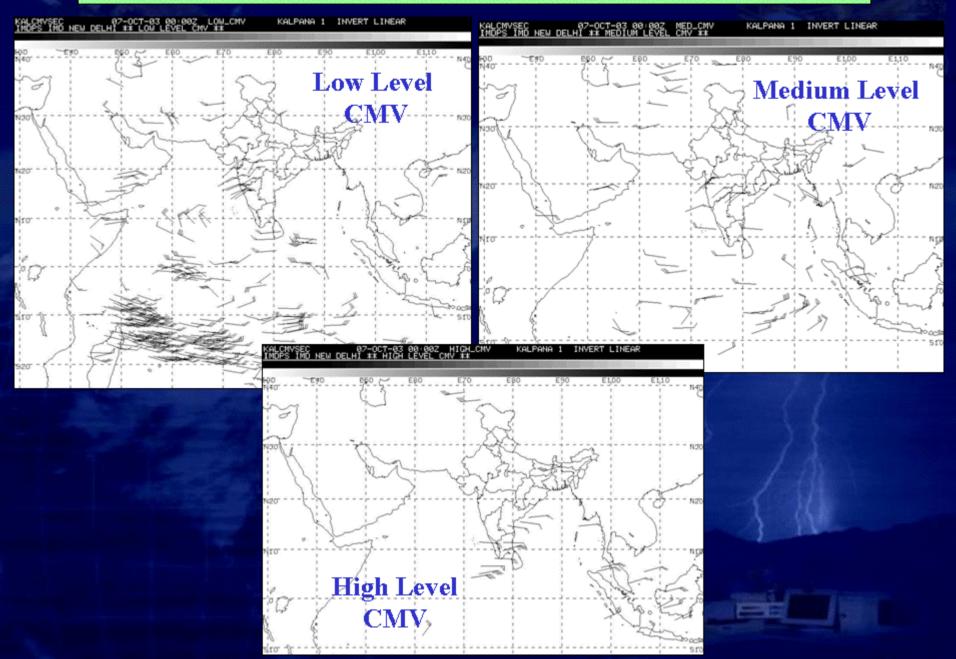
High Convective clouds and Fog Detection using INSAT-2E – CCD data

INSAT-2E VIS (0.65um) 18-1-2000 11:30




Deep Convective Clouds INSAT-2E SWIR (1.62um) 18-1-2000 11:30



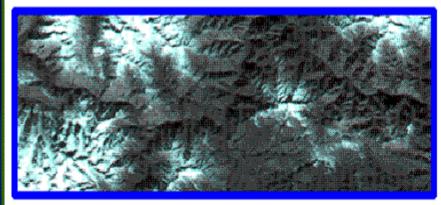


QPE in mm 06-Oct-05 06:00Z Kalpana-1 (IMD, N Delhi)

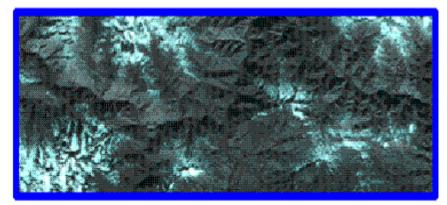
OLR in W/m² 06-Oct-05 06:00Z Kalpana-1 (IMD, N Delhi)

CMV 07-Oct-05 00:00Z Kalpana-1 (IMD, N Delhi)

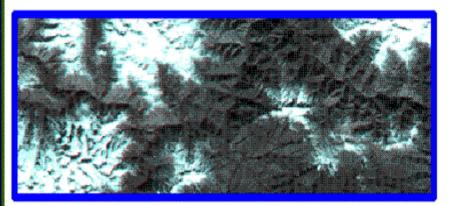
Indian Remote Sensing Satellites (IRS)

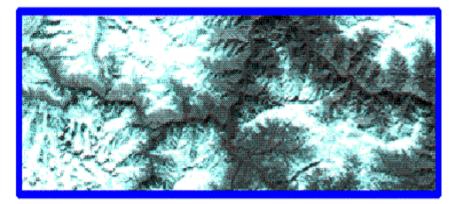

IRS Sensors

Satellite	Construction and the second second second	Sensors	Channels	Resolution	Swath /	
	Date				Repetivity	
IRS-1A	17.03.1988	LISS-1	0.45-0.52µm	72.5 m	148 km / 22 days	
			0.52-0.59µm			
			0.62-0.68µm			
			0.77-0. 8 6µm			
		LISS-2	0.45-0.52µm	36.25 m	147 km / 22 days	
			0.52-0.59µm			
			0.62-0.68µm			
			0.77-0. 8 6µm			
IRS-1B	29.08.1991	SameasI	RS-1A			
IRS-1C	28.12.1995	LISS-3	0.52-0.59µm	23.5 m	141 km / 24 days	
			0.62-0.68µm			
			0.77-0.86µm			
			1.55-1.70µm	70.5 m	148 km / 24 days	
		WiFS	0.62-0.68µm	188 m	770 km / 24 days	
			0.77-0. 8 6µm			
			1.55-1.69µm	188 x 246 m		
		PAN	0.50-0.75µm	5.8 m	70 km / 5 days	
IRS-1D	29.09.1997	SameasI	RS-1C			
IRS-P3	21.03.1996	WiFS	Same as IRS-1C	but additional ba	nd in MIR	
		MOS-A	0.755-0.768µm	1569 x 1395 m	195 km / 24 days	
		MOS-B	0.408-1.01µm	523 x 523 m	200 km / 24 days	
		MOS-C	1.5-1.7µm	523 x 644 m	192 km / 24 days	
IRS-P4	26.05.1999	ОСМ	402-422nm	360 x 236 m	1420 km / 2 days	
			433-453nm			
			480-500nm			
			500-520nm			
			545-565nm			
			660-680nm			
			745-785nm			
			845-885nm	-		
		MSMR	6.6, 10.6, 18, 21 f	ar SST, SSWS, T	WV, LWC	


IRS Applications

- IRS data is being used for a diverse range of applications such as:
- crop acreage and production estimation of major crops,
- drought monitoring and assessment based on vegetation condition,
- flood risk zone mapping and flood damage assessment,
- hydro-geomorphological maps for locating underground water resources,
- irrigation command area status monitoring,
- snowmelt run-off estimation,
- land use and land cover mapping,
- urban planning,
- · biodiversity characterisation,
- forest survey,
- wetland mapping,
- · environmental impact analysis,
- mineral prospecting,
- coastal studies,
- integrated surveys for developing sustainable action plans


MONITORING OF SEASONAL SNOW IN WESTERN HIMALAYAS


IRS-1C of Nov. 26, 1996

IRS-1D of Nov. 09, 1998

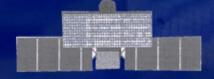
IRS-1C of Nov. 11, 1997

IRS IC of Nov. 09, 1999

SEASONAL SNOW COVER LESS IN EARLY WINTER OF 1996-99

RESOURCESAT - 1

In-orbit replacement for IRS 1C/1D with enhanced capabilities


: 17th Octobe
: Sun synchr
: LISS-4, LISS
: ± 26°

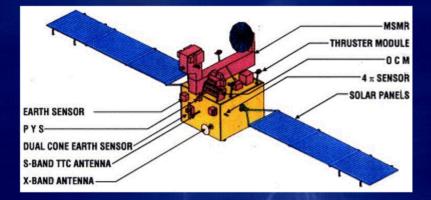
: 17th October, 2003 : Sun synchronous, 817 km : LISS-4, LISS-3, AWIFS & PAN : + 26°

SENSOR	BANDS	RESOLUTION (m)	REPETIVITY (Days)	SWATH (km)
LISS-3	G, R, NIR, SWIR	23.5	24	140
LISS-4	G, R, NIR	5.8	5	23
PAN (R)	and the second second	5.8	5	70
AwiFS	G, R, NIR, SWIR	55	5	700

RISAT - 1

Multimode C-band SAR to provide all weather imaging capability

Launch Orbit Payload Spectral Range Resolution Swath


- : 2005
- : Sun synchronous, 586 km
- : SAR
- : C band
- : 3-50 m in different modes
- : 10-240 km in different modes

Indian Remote Sensing – R&D Satellites for Climate / Weather

IRS-P4

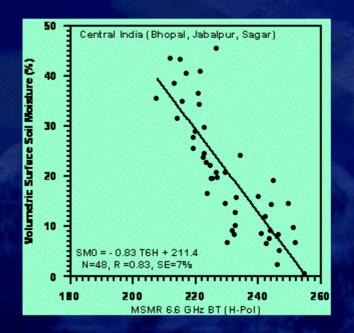
Specifications

Altitude720 KmSwath1360 KmRepetivity2 daysOrbit inclination98LaunchMay 26, 1999SensorsMSMR & OCM

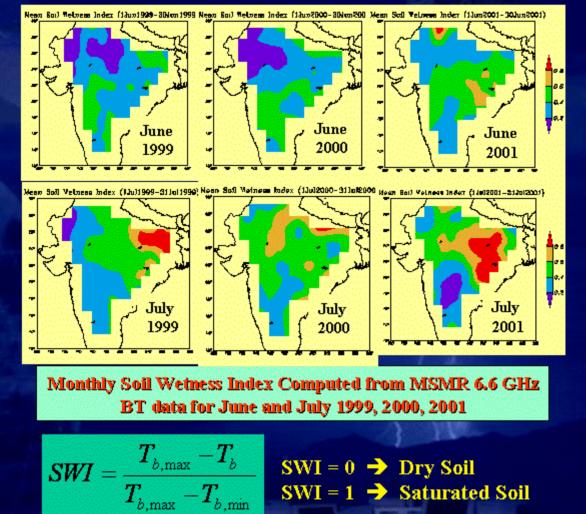
Weight65 kFrequency6.6,PolarizationV &Spatial Resolution40 toTemperature Resolution1 K

65 Kg 6.6, 10.6, 18 and 21 GHz V & H 40 to 120 Km 1 K

OCIVE	
Sensor	OCM - 1
Resolution (km)	0.360
Swath(km)	1420
Repeativity(days)	2
Equatorial crossing (hrs)	12:00
Spectral bands (nm)	412±10
	443±10
	490±10
	510±10
	555±10
	670±10
	765±20
	86 5 ±20
Radiometric quantisation	12
SNR	~350

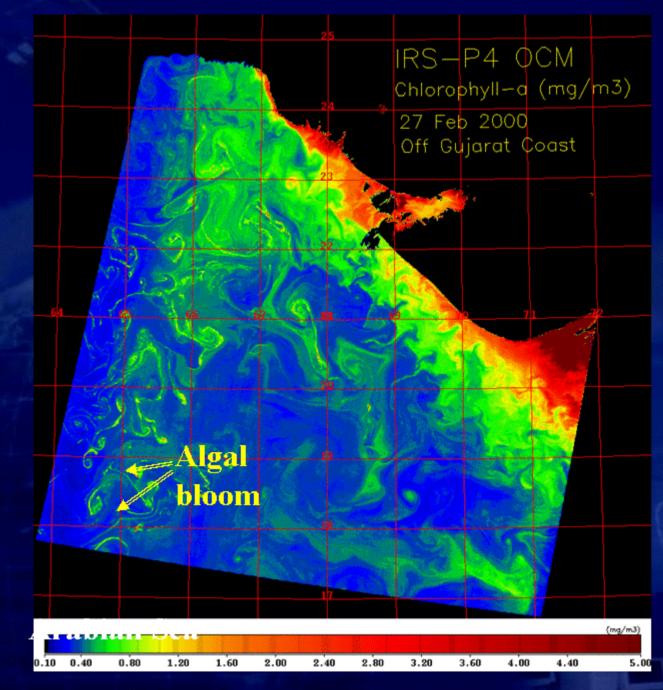

Parameters from MSMR

	Range	Resolution	Accuracy	Channels	Parameters
	0.2-7.5 Kg/cm ²	50 x 36 Km	0.4 g/cm ²	21 with 18 & 10	WV
Grid-3	0 - 80 mg/cm ²	50 x 36 Km		21 with 18 & 10	CLW
Grid-2	2 - 24 ms ⁻¹	75 x 75 Km	2.0 ms⁻¹	10 with 6,18 & 21	SSW
Grid-1	273 - 303 K	150 x 146 Km	1.5 K	6 with 10,18 & 21	SST
Griu-I					


R & D Parameters: Rainfall

Sea Ice Soil Moisture

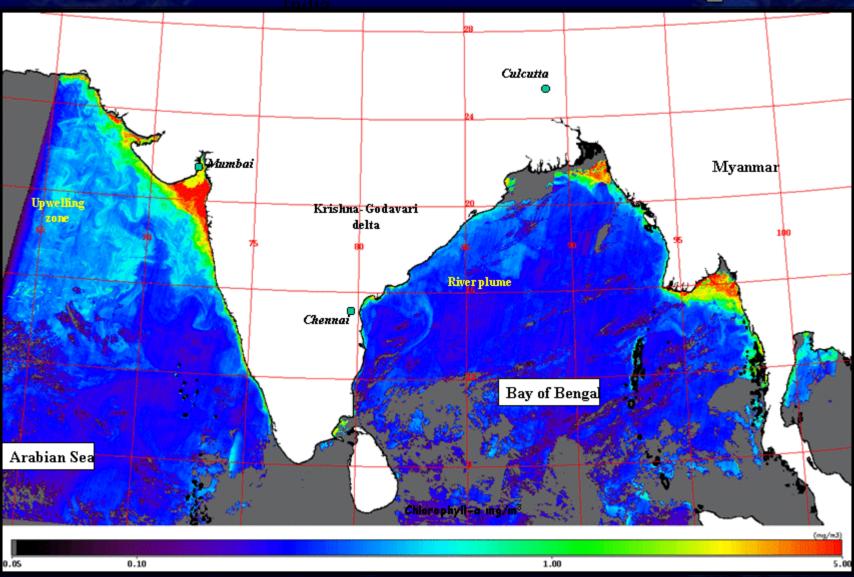
Large Area Soil Moisture using IRS-P4 MSMR Brightness Temperature

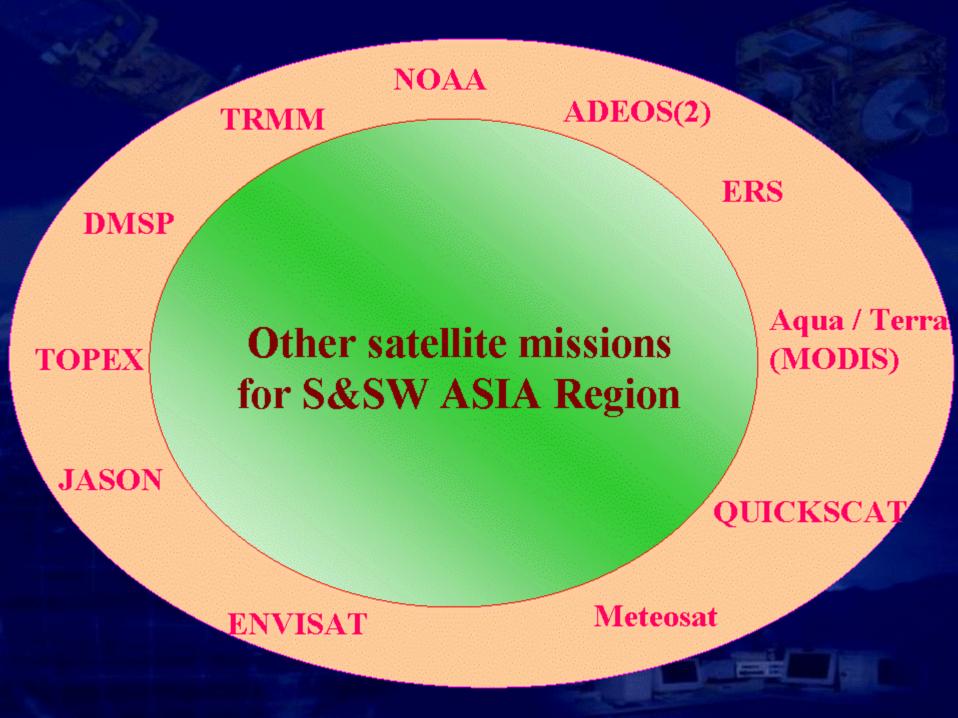


Regression Equation of Observed Soil Moisture with the MSMR 6.6 GHz BT

Ocean Colour Monitor

Sensor	OCM - 1	OCM - 2
Resolution (km)	0.360	0.360
Swath(km)	1420	1420
Repeativity(days)	2	2
Equatorial crossing (hrs)	12:00	12:00
Spectral bands (nm)	412±10	412±10
	443±10	443±10
	490±10	490±10
	510±10	510±10
	555±10	555±10
	670±10	620±10
	765±20	745±20
	865±20	865±20
Radiometric quantisation	12	
SNR	~350	


IRS-P4 OCM


Chlorophyll-a (mg/m³)

Off Gujarat coast, India (27 Feb, 2000)

Image shows distribution of algal bloom in open ocean waters of Arabian sea. High pigment patches are present in bottomleft corner of image.

Chlorophyll-a distribution in Arabian Sea and Bay of Bengal using IRS-P4 OCM data 29 & 30 January 2000

FUTURE INDIAN METEOROLOGICAL SATELLITES

OCEANSAT-2 (2007)
INSAT-3D (2007)
MeghaTropiques (2008?)
Climatsat (?)

OCEANSAT-2

OCM, Scatterometer (Ku Band)

Vector Winds Aerosol

INSAT - 3D

Improved Understanding of Mesoscale Systems

6 Channel IMAGER

 Spectral Bands (µm) Visible

VISIDIC	. 0.33 - 0.73
Short Wave Infra Red	: 1.55 - 1.70
Mid Wave Infra Red	: 3.80 - 4.00
Water Vapour	: 6.50 - 7.00
Thermal Infra Red – 1	: 10.2 - 11.3
Thermal Infra Red – 2	: 11.5 - 12.5

Resolution

: 1 km for Vis, SWIR 4 km for MIR, TIR 8 km for WV

. 0.55 0.75

19 Channel SOUNDER

- Spectral Bands (µm) Short Wave Infra Red Mid Wave Infra Red Long Wave Infra Red Visible
- Resolution (km) bands
- No of simultaneous
 sounding per band

- Six bands
- Five Bands
- Seven Bands
- One Band
- 10 X 10 for all
- Four

:

NINETEEN CHANNEL ATMOSPHERIC SOUNDER

A-19 channels atmospheric sounder for derivation of vertical temperature and moisture profiles with a resolution of 10 km at Sub-Satellite and capability of full disk coverage every half-hour is proposed on board INSAT 3D.

SIX	CHANNELS IMAGER	ł
	ON INSAT 3D	

Channel No.	Wavelength	Band	Resolution (Km)
1	0.55 - 0.75	um	1
2	1.55 - 1.70	um	1
3	3.7 - 3.95	um	4
4	6.5 - 7.1	um	8
5	10.3 - 11.3	um	4
6	11.3 - 12.50	um	4

Channel	Central Wavelength	Principal absorbing
No.	in um	constituents
1	14.71	CO-2 band
2	14.37	CO-2 band
3	14.06	CO-2 band
4	13.96	CO-2 band
5	13.37	CO-2 band
6	12.66	water vapor
7	12.02	water vapor
8	11.03	window
9	9.71	ozone
10	7.43	water vapor
11	7.02	water vapor
12	6.51	water vapor
13	4.57	N-2 0
14	4.52	N-2 0
15	4.45	CO-2
16	4.13	CO-2
17	3.98	window
18	3.74	window
19	0.69	vis

Megha Tropiques

SAPHIR

For studying water cycle and energy exchanges in the tropical belt

Low inclination (20°) for frequent simultaneous observations of tropics

- Water vapour
- Clouds
- Cloud condensed water
- Precipitation
- evaporation

MADRAS

- Water vapour profile
- Six atmospheric layers upto 12 km height
- 10 km Horizontal Resolution
- Outgoing fluxes at TOA
- 40 km Horizontal Resolution
- Precipitation and cloud properties
- 89 &157 GHz : ice particles in cloud tops
- 18 & 37 GHz: cloud liquid water and precipitation
- 23 GHz : Integrated water vapour

Contributing to Global Precipitation Mission (GPM)

Mission Objective

Understanding the water cycle and energy exchanges that characterize the Tropical Convective System (TCS)

Improving models for weather prediction particularly of cyclones, floods etc.

Our Objective

Retrieval and Validation of rainfall over ocean and land and their Assimilation in Atmospheric & Oceanic Models.

Understanding the Interannual variation of rainfall in relation to the Intraseasonal oscillation (ISO)

International TOVS Study Conference, 15th, ITSC-15, Maratea, Italy, 4-10 October 2006 Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2006.