Assessment of Global Cloud Climatologies from Satellite Observations

Claudia Stubenrauch IPSL - Laboratoire de Météorologie Dynamique, France

input from participants of GEWEX Cloud Assessment

October 2006

ITSC 15

2nd GEWEX Cloud Climatology Assessment Workshop

6-7 July 2006 in Madison, USA: 20 presentations, 50 participants Co-chairs: Bryan Baum (SSEC, Univ. Wisconsin), Claudia Stubenrauch

Longterm cloud climatologies:
ISCCP
TOVS Path-A, TOVS Path-B, UW-HIRS
Surface observations
SAGE
PATMOS-X

EOS cloud climatologies: MODIS AIRS MISR Polar cloud datasets

Summary and evaluation of cloud properties: average cloud properties, regional, interannual, seasonal, diurnal variations

<u>Climate monitoring:</u> trends and where they can originate from

http://cimss.ssec.wisc.edu/cloud_climatology/2006

October 2006

ITSC 15

Longterm cloud datasets:

1) Imagers on geostationary (GEO) and polar (LEO) satellites: 1983-2005 **ISCCP** (Rossow et al., BAMS 1999)

- 2 radiances during daylight (IR +VIS)
- every 3 hours, 5 km resolution sampled to 30 km, 2.5°
- CA, T_{eld}, τ_{eld}, p_{eld}, CA per cloud type -> HCA, MCA, LCA; r_e LWP / IWP

2) Vertical IR sounders (TOVS) on polar satellites:

TOVS Path-A (Susskind et al., BAMS 1997) reanalysis: **1985-2001** •cld clearing, cld properties: from 5 radiances along CO₂ absorption band & 2 FOVs • ECA, p_{eld} weighted by ECA

TOVS Path-B (Stubenrauch et al., J. Clim. 2006)

cld detection: MSU-HIRS, cld properties: χ² - Nε for 5 radiances along CO₂ absorption band morning (NOAA10,12) + afternoon satellites (NOAA11), 20 km resolution, averaged over 1°

- CA, T_{cld}, ε_{cld}, p_{cld}, ECA, CA and ECA per cloud type -> HCA, MCA, LCA
- D_e, IWP for semi-transparent cirrus

UW-HIRS (Wylie et al., J. Clim. 2005)

- cld detection: IR window + CO₂ screening, cld properties: CO₂ slicing
- afternoon satellites, nadir $\pm 18^\circ$, correction for satellite drifting, CO₂ correction
- CA, HCA, MCA, LCA

October 2006

1985-2001

.....1987-1995....

3) Analysis using surface weather reports:

<u>SOBS ocean</u> (Hahn & Warren 1999) **1952-1996 SOBS land** (Hahn & Warren 2003) **1971-1996**

- every 6 to 3 hours, 5°
- CA, LCA; MCA, HCA (random overlap assumed), cloud base

4) Cloud occurrence from solar occultation :

 SAGE (Wang et al. 1996, 2001)
 1984-1991, 1993-2005

 • at sun rise and sun set: $2.5 \times 200 \text{ km}$ hor. & 1 km vert. resolution

 • extinction $2x10^{-4} - 2x10^{-2} \text{ km}^{-1}$: subvisible cirrus, $2x10^{-2} \text{ km}^{-1}$: opaque cloud

•Occurrence per 1km layer, T_{cld}, p_{cld}

5) Radiometers (AVHRR) on polar satellites:

PATMOS-X (NESDIS/ORA; Heidinger)

Jan, Apr, Jul, Oct 1984-2004

- 0.63μm, 0.86μm, 3.75μm, 10.8μm and 12μm
- afternoon satellites + morning satellites (1995-2004), 4 km resolution, averaged over 0.5°
- CA, T_{cld}, ε_{cld}, p_{cld}, cloud type, HCA, MCA, LCA

Average CA

PATMOS averages by A. Heidinger SAGE averages by P.-H. Wang, preliminary

ISCCP (84-04) TOVS-B (87-95) UW-HIRS (85-01) PATMOS(JAJO04) SAGE(85-99)

Cloud amounts (%)	glo	bal	oce an						la nd						
all	66	73	75	62	92	70	74	77	67	91	58	69	70	46	93
Thick Cirrus	3	2	2			3	2	1			3	4	5		
Cirrus	19	27	31			18	27	33			21	27	29		
High-level / CA	33	41	44	37	43	30	39	44	34	44	41	45	49	48	45
Mid-level / CA	27	16	16	18	20	26	14	14	14	19	31	25	17	24	25
Low-level / CA	39	42	37	45	36	41	47	42	42	37	29	30	34	28	30

diurnal sampling, time period for ISCCP / TOVS-B: 1% effect; low-level over land: 2% **can be more important if using afternoon satellites** (*D. Wylie, A. Evan*)

~ 70 % (±5%) cloud amount: 5-12% more over ocean than over land PATMOS CA low, esp. over land; SAGE CA (clds τ >0.03) 1/3 higher (200 km path) 25-30% low clouds: 8-15% more over ocean than over land ~33% high clouds: only 3% thick Ci; more over land than over ocean? IR sounders ~ 10% more sensitive to Ci than ISCCP&PATMOS SAGE cloud vertical structure in good agreement with IR sounders

Regional CA

PATMOS averages by A. Heidinger SAGE averages by P.-H. Wang, preliminary

ISCCP (84-04) TOVS-B (87-95) UW-HIRS (85-01) PATMOS(JAJO04) SAGE(85-99)

Cloud amounts (%)	NH	mi	dl			tro	pic	S			SH	mi	dl		
all	68	73	75	63	91	63	71	75	65	95	74	79	83	76	88
Thick Cirrus	3	3				4	3				3	2			
Cirrus	20	25				26	45				16	22			
High-level / CA	34	38	44	35	45	46	66	60	54	56	26	30	41	29	42
Mid-level / CA	31	22	17	22	29	21	6	7	11	13	36	19	18	20	25
Low-level / CA	38	37	40	43	26	32	30	35	35	32	49	49	42	51	34

IR sounders & SAGE more sensitive to Ci: 5%-20% (midlat/tropics)

CA: SHm>NHm>trp8-11% differenceexception : SAGE (sampling?)HCA: trp>NHm≥SHm14-36% differenceLCA: SHm>NHm>trp2-19% difference

UW-HIRS, SAGE less latitudinal variation than TOVS-B:

NCEP - retrieved atmos. profiles

Average + regional cloud properties

ISCCP (84-04) TOVS-B (87-95) TOVS-A (85-01)											
	glo	glo bal				ocean					
T _{cld} (K)	261	261		265	263		250	255			
p _{cld} (hPa)	577	604	544	616	628	545	481	543	543		
ECA (%)	55	47	40	59	48	42	46	45	36		
	ISCC	P (84-	- 04) T	OVS-	B (87	-95) T	OVS-	A (85	-01)		
	NH	l midl		SH midl							
T _{cld} (K)	257	259		265	259		259	262			
P _{cld} (hPa)	552	594	583	544	513	435	624	650	603		
ECA (%)	58	48	45	50	41	32	74	54	54		

T_{cld} within 2K / 5K for ocean /land clouds lower + thicker over ocean than over land: 135/85/2 hPa + 13/3/6 % P_{cld}, ECA: trp<NHm<SHm: 8/80/150 hPa 70/55/20 hPa + 8/7/13 % 16/6/14 % TOVS-A much smaller p_{cld} and ECA in tropics than TOVS-B!

Daytime MODIS CA, p_{cld} : MOD08 (MODIS Team) – CERES inversion

MOD08–AIRS (LMD retrieval) – ISCCP – TOVS B

CA seasonal cycle: *NH*–*SH* subtropics, midlatitudes, polar regions

Seasonal (and diurnal cycles) stronger over land than over ocean, strongest in subtropics Seasonal cycles similar , exception: SH polar land N 5% 10% 20% 35% 5-10% 5-15% S N 5-10% 5-15% 10% 5-8% 5% 3-8% S TOVS/HIRS absolute values 5-12% larger than ISCCP SOBS close to ISCCP, better agreement over land than over ocean (prob. statistics)

HCA seasonal cycles in latitude bands

Global CA trends

SOBS: increasing over ocean, stable over land >1985 (*Warren et al. J. Clim. 2006*)

Correlation between global and regional anomaly:

- 1. calculate anomaly maps per month and per year: A(i,j,m,y)
- 2. calculate global anomaly per month and per year: AG(m, y)
- 3. determine map of (linear) correlation coefficients: r(i,j)

similar results by J. Norris, A. Evans

Study on causes for spurious CA changes

W. B. Rossow

▶ Radiance Calibration effects: <0.5% on ISCCP CA; <1% on CA per type

Satellite Viewing Geometry effect: 1%
 BUT: pattern of θ_v variations does not match CA changes

>Changes in Cloud Property Distribution : decreasing τ of low clouds -> below detection

(*Tselioudis et al. 1992*: τ decreases with T)

Changes in Sampling Distribution & Coverage: check for other datasets

October 2006

*average cloud properties: in general good agreement

70% (±5%) clouds: 25-30% low clouds, 30% high clouds (+ ~15% subvisible Ci),stable within 2%

seasonal cycle: CA good agreement (except SH polar land)

- ISCCP HCA cycle in tropics underestimated
- SOBS LCA cycle over ocean smaller; absolute value 18% larger

*regional differences (latitudinal, ocean/land):
 linked to cirrus sensitivity: IR sounders & SAGE : HCA +4% (midl) to +20 % (trp) atmos. profiles: TOVS B less HCA in SH compared to SAGE & HIRS
 *diurnal cycle: TOVS-B extends ISCCP during night (see ITSC 14)
 *EOS datasets still in validation process

Trend analysis: careful of satellite drifts, calibration etc. many processes important synergy of different variables important !

*Intercomparison continues (esp. on trends) & WMO report in preparation

October 2006

International TOVS Study Conference, 15th, ITSC-15, Maratea, Italy, 4-10 October 2006 Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2006.