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CRTM Capability

Supported Instruments
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Significance: CRTM framework is designed to accelerate transition of new radiative
transfer science for assimilation of operational and research satellite data in NWP models
and to improve the retrieval technology in satellite remote sensing system
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munity Contributions

ch: Radiative transfer science
e Order of Iteration

sity of Colorado -DOTLRT

" UCLA Delta 4 stream vector radiative transfer model
= Princeton Univ — snow emissivity model improvement

= NESDIS - Advanced doubling and adding scheme, surface emissivity
models, LUT for aerosols, clouds, precip

= AER - Optimal Spectral Sampling (OSS) Method
= UMBC - SARTA

® Core team (ORA/EMC): Smooth transition from research to
operation
= Maintenance of CRTM
» CRTM interface
= Benchmark tests for model selection
= Integration of new science into CRTM
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® Delta 4 streams vector radiative transfer model
®* Discrete ordinate tangent linear riadiative transfer

® Successive order of iteration (also see the presentation by
Benartz: 11.10)
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tive Transfer Scheme:
sive Order of Iteration
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Dust
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1.5-5.0, 5.-10. pm wavelength

Significance: The Goddard Chemistry Aerosol Radiation and Transport (GOCART) model
simulates major tropospheric aerosol components, including sulfate, dust, black carbon (BC),
organic carbon (OC), and sea-salt aerosols. It is also used by NOAA in its air quality forecast
system. The same GOCART aerosol physics implemented into CRTM will attract more users for air
quality data assimilation
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n NOAA-17 HIRS/3 h

Aerosol Effect on hirs3 nl17

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
O | | I

BT difference (K

0.1 g/m? OC aerosol at layer 63 (300 hPa)
0.1 g/m? Dust aerosol at layer 80 (592 hPa)
0.1 g/m? Dust aerosol at layer 82 (639 hPa)
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on HIRS Channels

BT (Dust)
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Weaver, 2005, UMBC
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for new instruments (baseline

® Optimal spectrum sampling for more instruments ( also
see the presentation by Han et al: B21)

® Stand-alone AIRS radiative transfer approximation

® Fast parameterization of Zeeman effect (also see the
presentation by Han: 1.6)
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WITh apbout U.Z2 K @ Uracy In mid- to lower-
tropospheric temperature and water vapor
sounding channels.

3. The model allows the user to vary mixing ratios
of H20, O3, CH4, and CO. It also includes minor
gas mixing ratios of CO2, SO2, HNO3 and N20.

4. Non-LTE is incorporated .

Significance: In CRTM framework, the original
SARTA program is re-coded to meet the CRTM
standard. In addition, the SARTA tangent-linear and
adjoint models have been also completed. This
implementation for the forward and Jacobian
computation is very useful for operational
applications and for the consistency between forward
and adjoint calculations in satellite data assimilation.

adiative Transfer Approximation
[A) now in A CRTM
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7

ich energy
quantum
o the

Transition lines (Zeeman components) :

The selection rules permit transitions with AJ = +1 and AM
=0, 1. Forachange in J (i.g. J=3 to J=4, represented by
3%), transitions with

AM = 0 are called ™ components,

AM = 1 are called o+ components and

AM = -1 are called o- components.

Polarization:

The three groups of Zeeman components also exhibit
polarization effects with different characteristics. Radiation
from these components received by a circularly polarized
radiometer such as the SSMIS upper-air channels is a
function of the magnetic field strength |B|, the angle 65
between B and the wave propagation direction k as well as
the state of atmosphere, not dependent on the azimuthal
angle of k relative to B.
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(2) The Earth’s magnetic field is assumed
constant vertically

(3) For each layer, the following regression
is applied to derive channel optical depth
with a left-circular polarization:

Tb,lc = Z(Ti—l —7 )Tair,i
i=l

7, =7,,exp(-0D,.,/COS(0)), 7,=1

Ic,i
m

ODIc,i =GCio +Zci,jxi,j
j=1

v — 300/T; T — temperature
B — Earth magnetic field strength

0g — angle between magnetic field and propagation direction

From Han, 2006, 15t ITSC

Th{k) from fast meodel

Tb{k) from fast meoded
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Emissivity Models

ice emissivity for new microwave

mprove the performance of microwave ocean emissivity model
® Evaluate several advanced snow emissivity models

® Study MW and IR emissivity relationship



mmunity Surface Emissivity Model

IR EM module IR EM module IR EM module IR EM module
land ocean Snow lce

Surface Emissivity/
Reflectivity Module

MW EM module MW EM module MW EM module MW EM module
land ocean Snow lce

FASTEM-1/3 (English and Hewison, 1998)
OceanEM (full polarimetric, Weng and Liu, 2003)
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e Canopy - Four layer

clustering scattering

Bare soil — Coherent
reflection and surface
roughness

Snow/desert — Random
media

Weng et al (2001, JGR)

missivity Modeling

Surface Emissivity Spectra (6:530)
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vave Emissivity Spectra

Snow V-POL Emissivity Spectra Snow H-POL Emissivity Spectra
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Sea Ice V-POL Emissivity Spectra
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ed Snow Emissivity Models

rusch et al., 2001, 2004; Gao et al., 2004)

2mission from a surface partially covered with vegetation and/or snow
. Snow component based on the semi-empirical HUT emission model

 Treats snowpack as a single homogeneous layer

* Dielectric constants of ice and snow calculated from different optional models

* Inputs include snow depth, density, temperature, grain size and ground temperature

DMRT (Tsang et al, 2000)

 Calculates Tb from a densely packed medium

A quasi-crystalline approximation is used to calculate absorption characteristics
with particles allowed to form clusters

» The distorted Born approximation is used to calculate the scattering coefficients

* Inputs include snow depth, snow temperature, fractional volume and grain size

MEMLS (Matzler, 1998)

* Calculates Tb from a multi-layer snow medium

» The absorption coefficient is derived from snow density, frequency and temperature

» The scattering depens on snow density, frequency and correlation length

* Inputs include snow depth, temperature,density, ground temperature and correlation length
 So far successfully validated only for dry snow conditions
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Simulated (MEMLS and LSMEM) and observed (AMSR-E) near-surface Th at LSOS for the period 04.02.2003 -29.03.2003
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Emissivity Relationship

il
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R Emissivity from MW

Dr. Peiming Dong (CMA Visiting Scientist)
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loudy Radiance Assimilation

Temperature at 200 hFo (27:00:00 C) Temperature ot 200 hPa (27:00:00 T)
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Significance: Direct assimilation of satellite W i
radiances under all weather conditions is a o0 son
central task for Joint Center for Satellite Data . o
Assimilation (JCSDA) and other NWP centers. 2 8 2an |
With the newly released JCSDA Community :;: ., — A
Radiative Transfer Model (CRTM), the JCSDA by ;& .

and their partners will be benefited for AR
assimilating more satellite radiances in global
and mesoscale forecasting systems and can

improve the severe storm forecasts in the next

decade

1 13 14 15 17 18 19 0 22 23 24 26

The initial temperature field from control

run (left panels) w/o uses of SSMIS

rain-affected radiances and test run (right panels)
using SSMIS rain-affected radiances
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Summary

ative transfer model (CRTM) framework allows
sition to operations fast radiative transfer
components

scnemes anad

® CRTM-Version 1 was implemented in NCEP GSI, including
OPTRAN, IR/MW emissivity models, and ADA. It is also being
tested for WRF-Var data assimilation

®* |R and MW emissivity spectra displays a strong correlation in
deserts. This correlation may be used to estimate IR emissivity
under cloudy conditions from MW emissivity data base

®* The Version 2 will include the zeeman absorption, aerosol
scattering, SARTA, OSS, and possible interface with RTTOV
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