Principle Component Analysis of IASI spectra with a focus on Non-uniform Scene Effects on the ILS

David Tobin, Hank Revercomb, Paolo Antonelli

Space Science and Engineering Center, University of Wisconsin-Madison, USA

Non-uniform scene ILS corrections Involves reconstruction of the spectra with the "spectral shift" PC

coefficients set to zero.

Frequency and Magnitude of the Effects

Geometrical versus Radiometric FOV

with the Imager

spectral shift (ppm)

Histog

0.15 0.1 0.05

spectral shift limit (ppm)

ectral shifts versus Imager analysis o

The spectral shifts, which correlate well with analysis of the imager data, are as large as +/- 30 ppm for this typical granule.

• Principle Component Analysis (PCA) is a useful tool for identifying and characterizing sensor characteristics. This investigation focuses on the effects of scene nonuniformity on the ILS.

• Scene non-uniformity within the IASI footprints manifests primarily in spectral shift artifacts, and these are found to be largely characterized by a single PC/eigenvector when using dependent set PCA.

• Preliminary results suggest that spectra reconstructed with this "spectral shift" PC excluded have a large portion of the non-uniform scene ILS effects removed. For the example granule shown here, ±30 ppm shifts are reduced to ±4 ppm.

· More work needs to be done to study the accuracy, robustness, and computational efficiency of this correction approach, including (a) the use of synthetic principle components, (b) comparison with physics-based corrections, and (c) the impact of the corrected data on retrievals.

PCA of IASI Spectra

Y = N columns of differences from the mean spectrum, y-<y>

Singular Value Decomposition gives U, Λ , and V such that Y = U Λ V^T where **D** is diagonal and $U^TU = V^TV = I$

The \mathbf{j}^{th} spectrum $\mathbf{y}_{\mathbf{j}}$ can then be reconstructed as a sum of vectors (components) \mathbf{u}_i with coefficients $\mathbf{c}_{ij} = \lambda_i \mathbf{v}_{ij}^T = \mathbf{U}^T (\mathbf{y}_j - \langle \mathbf{y} \rangle)$:

 $y_i = \langle y \rangle + \Sigma_i c_{ii} u_i$

Considerations:

- The sample size Dependent vs. Independent set PCs Noise normalization (y/NEDN vs. y) - The number of PCs to use in the reconstructions
- Entire spectrum or band by ban

Longwave Principle Components (u;) for 2007.10.15 granule

International TOVS Study Conference, 16th, ITSC-16, Angra dos Reis, Brazil, 7-13 May 2008. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2008.