

Community Radiative Transfer Model: Status and Development

Paul van Delst, Yong Han Joint Center for Satellite Data Assimilation

- JCSDA Team
 - Quanhua Liu
 - Yong Chen
 - David Groff
 - Banghua Yan
 - Fuzhong Weng
 - Ron Vogel
- Invaluable feedback from
 - NRL; Ben Ruston and Nancy Baker
 - NCAR; Zhiquan Liu

- Current Status
 - Preamble
 - Components
- Development
 - Transmittance models
 - Emissivity models
 - Radiative Transfer schemes

- Current Status
 - Preamble
 - Components
- Development
 - Transmittance models
 - Emissivity models
 - Radiative Transfer schemes

- Current CRTM release is v1.1 (Feb.29, 2008)
- Source code and coefficient tarballs available at: ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM
- Mailing list can be subscribed to at:

https://lstsrv.ncep.noaa.gov/mailman/listinfo and click on the

```
NCEP.List.EMC.JCSDA_CRTM
```

link.

- Next scheduled release is v1.2 for Jul.01, 2008.
 - Will also include web page.
 - "Public" repository may also be accessible.

Current Status – Components

- Four models
 - FWD, TL, AD, and K-Matrix
- Atmospheric Optics
 - Gaseous Absorption
 - Clouds
 - Aerosols
- Surface Optics
 - Infrared Land, Ocean, Snow, and Ice emissivity models
 - Microwave Land, Ocean, Snow, and Ice emissivity models.
- Radiative Transfer
 - Clear: view angle emission model
 - Scattering: Advanced Doubling-Adding (ADA) algorithm.

- Four models
 - FWD, TL, AD, and K-Matrix
- Atmospheric Optics
 - Gaseous Absorption
 - Clouds
 - Aerosols
- Surface Optics
 - Infrared Land, Ocean, Snow, and Ice emissivity models
 - Microwave Land, Ocean, Snow, and Ice emissivity models.
- Radiative Transfer
 - Clear: view angle emission model
 - Scattering: Advanced Doubling-Adding (ADA) algorithm.

- Atmospheric Optics
 - Gaseous Absorption
 - Clouds
 - Aerosols
- Gaseous absorption in the CRTM is computed using the compactOPTRAN algorithm.
- Water vapour, ozone, and "dry" gas absorption. Water vapour vapour continuum is poorly handled.
- Vertical profiles of absorption coefficient are predicted from a set from a set of polynomial basis functions.
- Trained from LBLRTM v9.4 (IR) and Liebe89/93 (MW) line-byline transmittances. Rosenkranz (MW) option.
- HITRAN2000 + AER updates
- UMBC48 dependent profile set.

- Atmospheric Optics
 - Gaseous Absorption
 - Clouds
 - Aerosols
- Six cloud types
 - Water, rain, snow, ice, graupel, and hail.
- Cloud optical properties are interpolated from LUTs as functions functions of frequency, effective radius, temperature (liquid), and (liquid), and density (solid).
- Currently assume spherical particles.
- Need to supplement LUT data to increase data range (no extrapolation is performed) and density (to minimise interpolation interpolation artifacts).

- Atmospheric Optics
 - Gaseous Absorption
 - Clouds
 - Aerosols
- Eight aerosol types
 - -Dust, sea salt (SSAM, SSCM), wet and dry organic carbon, carbon, wet and dry black carbon, sulfate.
- Aerosol optical properties are interpolated from LUTs as functions of frequency and effective radius.
- Currently assume spherical particles.
- Need to correct some LUT anomalies (repeated radii, partially partially discretised data)

Current Status – Surface Optics

- Four models
 - FWD, TL, AD, and K-Matrix
- Atmospheric Optics
 - Gaseous Absorption
 - Clouds
 - Aerosols
- Surface Optics
 - Infrared Land, Ocean, Snow, and Ice emissivity models
 - Microwave Land, Ocean, Snow, and Ice emissivity models.
- Radiative Transfer
 - Clear: view angle emission model
 - Scattering: Advanced Doubling-Adding (ADA) algorithm.

- Surface Optics
 - Infrared Land, Ocean, Snow, and Ice emissivity models
 - Microwave Land, Ocean, Snow, and Ice emissivity models.

- No operational changes.
- Ocean: Emissivity LUT based on Wu-Smith model (ensemble mean of 1-*r*) generated at high resolution. Emissivity interpolated interpolated as a function of view angle, wind speed, and frequency.
- Land, Snow, and Ice: Emissivity database LUT. Measurement database is for various land, snow and ice surface types. 24 surface types in total (NPOESS Net Heat Flux ATBD, 2001).

- Surface Optics
 - Infrared Land, Ocean, Snow, and Ice emissivity models
 - Microwave Land, Ocean, Snow, and Ice emissivity models.

• Ocean: FASTEM-1. NESDIS model is an option.

- Land: Physical model when *f*<80GHz, ε =0.95 for *f*≥80GHz.
- **Snow**: Empirical models for AMSU, MHS, AMSR-E, MSU, and SSM/I. Physical model for other sensors when *f*<80GHz, ε=0.9 for *f*≥80GHz.
- Ice: Empirical models for AMSU, MHS, AMSR-E, MSU, and SSM/I. ϵ =0.92 for other sensors.
- Operational change: Additional of MHS model.

- Four models
 - FWD, TL, AD, and K-Matrix
- Atmospheric Optics
 - Gaseous Absorption
 - Clouds
 - Aerosols
- Surface Optics
 - Infrared Land, Ocean, Snow, and Ice emissivity models
 - Microwave Land, Ocean, Snow, and Ice emissivity models.
- Radiative Transfer
 - Clear: view angle emission model
 - Scattering: Advanced Doubling-Adding (ADA) algorithm.

- Radiative Transfer
 - Clear: view angle emission model
 - Scattering: Advanced Doubling-Adding (ADA) algorithm.

 Downwelling radiation computed at diffuse angle for Lambertian surface (IR sensors) or at the satellite zenith angle for specular surface (MW sensors).

• Surface reflected solar radiation is included.

• Cloud and aerosol pure absorptions are accounted for.

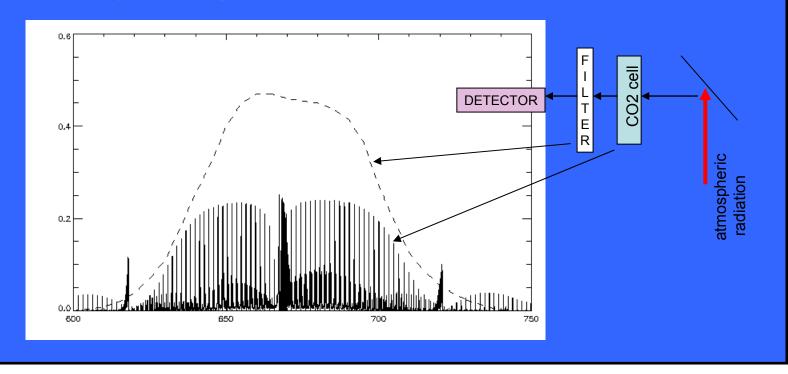
- Radiative Transfer
 - Clear: view angle emission model
 - Scattering: Advanced Doubling-Adding (ADA) algorithm.

• A strict multiple scattering method for any discrete-ordinate angles (i.e. streams).

- Sensor zenith angle is included as an additional stream.
- Layer transmission and reflection matrices are calculated using a doubling method; layer source function is a linear analytic expression of the transmission and reflection matrices. A stack technique is used for integrating layers and surface.
- Surface reflection matrix is used.

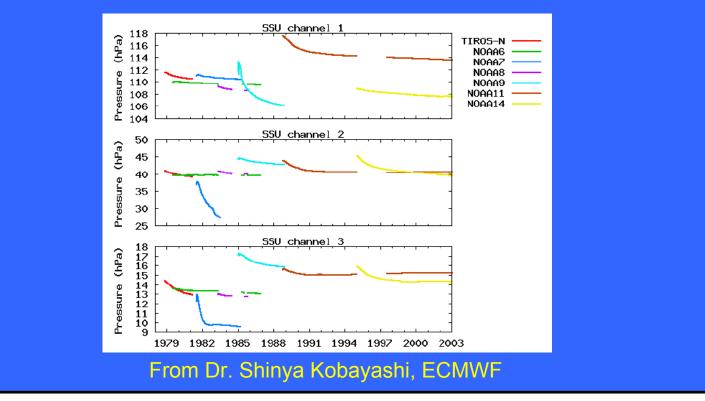
- Current Status
 - Preamble
 - Components
- Development
 - Transmittance models
 - Emissivity models
 - Radiative Transfer schemes

- SSU model
 - Developed for NCEP reanalysis
- Model that accounts for Zeeman-splitting.
 - Earth rotation Doppler shift
 - Channel polarisation
- New CRTM transmittance module
 - Multiple algorithm
 - Addition of trace gases.
- Line-by-line model updates
 - Improvement in microwave continuum.
 - Recomputation of infrared transmittances.


- SSU model
 - Developed for NCEP reanalysis
- Model that accounts for Zeeman-splitting.
 - Earth rotation Doppler shift
 - Channel polarisation
- New CRTM transmittance module
 - Multiple algorithm
 - Addition of trace gases.
- Line-by-line model updates
 - Improvement in microwave continuum.
 - Recomputation of infrared transmittances.

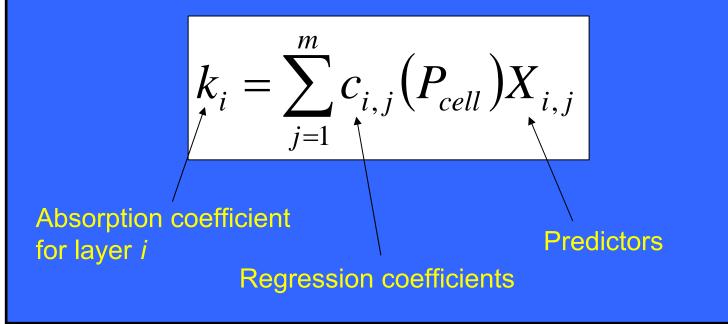
- SSU model
 - Developed for NCEP reanalysis

• SSU SRFs are the product of traditional broadband and the CO₂ cell absorption response.

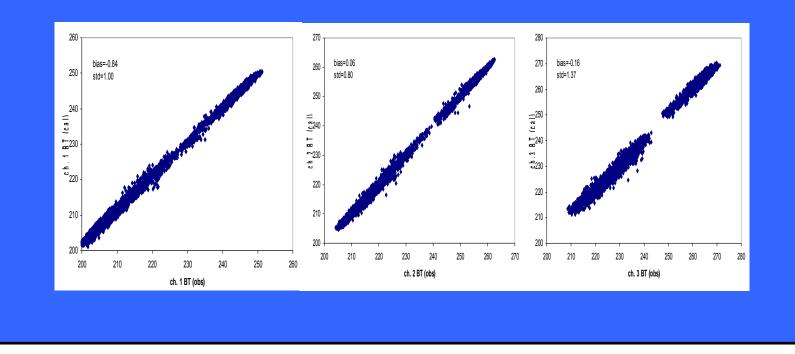

ITSC-16, May 7-13 2008, Angra dos Reis, Brasil

- SSU model
 - Developed for NCEP reanalysis

• CO₂ leakage in cell pressure modulator causes SRF variation.



- SSU model
 - Developed for NCEP reanalysis

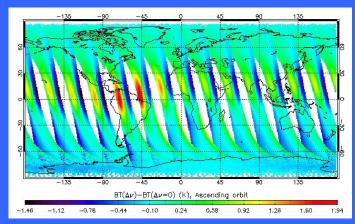

The transmittance model is compactOPTRAN
The regression coefficients coefficients are stored as a function of CO₂ cell pressure,

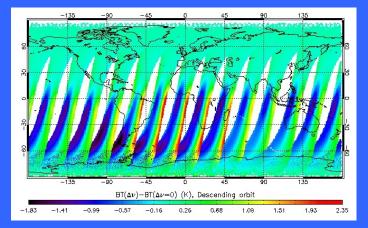
- SSU model
 - Developed for NCEP reanalysis
- Validation using Microwave Limb Sounding Product.
 SSU and MLS data in 11/2004 for all match-up points,

- SSU model
 - Developed for NCEP reanalysis
- Model that accounts for Zeeman-splitting.
 - Earth rotation Doppler shift
 - Channel polarisation
- New CRTM transmittance module
 - Multiple algorithm
 - Addition of trace gases.
- Line-by-line model updates
 - Improvement in microwave continuum.
 - Recomputation of infrared transmittances.

- Model that accounts for Zeeman-splitting.
 - Earth rotation Doppler shift
 - Channel polarisation

• See poster A08: "Radiative Transfer Modeling for SSMIS Upperair Sounding Channels: Doppler-shift Effect due to Earth's Rotation" by Y.Han.

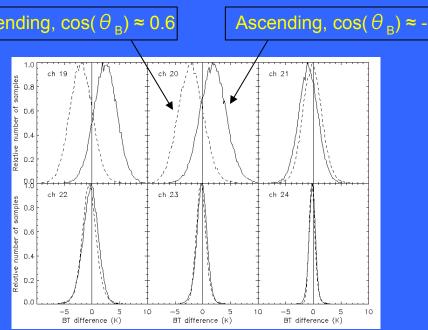

• See poster A09: "A Fast Radiative Transfer Model for AMSU-A Channel 14 with the Inclusion of Zeeman-splitting Effect" by Y.Han.



- Model that accounts for Zeeman-splitting.
 - Earth rotation Doppler shift
 - Channel polarisation

• Earth rotation Doppler shift (up to 75kHz) has significant impact (up to 2K) on SSMIS channels 19-21.

Simulated brightness temperature differences for SSMIS ch.20 with and without the inclusion of the Doppler shift effect



- Model that accounts for Zeeman-splitting.
 - Earth rotation Doppler shift
 - Channel polarisation

• Receivers of the UAS channels are confirmed to be right circularly polarised; knowing the correct polarisation is important in the presence of the Doppler shift $Descending, \cos(\theta_{\rm p}) \approx 0.6$ Ascending, $\cos(\theta_{\rm p}) \approx -0.6$

Histogram of the measured BT difference between the east- and west-most pixels of the scans. Pattern matches that from RCP receivers

- SSU model
 - Developed for NCEP reanalysis
- Model that accounts for Zeeman-splitting.
 - Earth rotation Doppler shift
 - Channel polarisation
- New CRTM transmittance module
 - Multiple algorithm
 - Addition of trace gases.
- Line-by-line model updates
 - Improvement in microwave continuum.
 - Recomputation of infrared transmittances.

- New CRTM transmittance module
 - Multiple algorithm
 - Addition of trace gases.

Current transmittance algorithm: CompactOPTRAN
 Advantages: Smooth Jacobian profiles; Small memory footprint.
 Disadvantages: Poor accuracy in some channels; Predictand is ln(*k**) and *k** can be negative; Polynomial evaluation is computationally expensive.

• Adapt CRTM to accept multiple algorithms for transmittance calculations; OPTRAN, RTTOV, SARTA.

- New CRTM transmittance module
 - Multiple algorithm
 - Addition of trace gases.

• Current algorithm can still only handle H_2O and O_3 .

```
• Add CO_2, CO, CH<sub>4</sub>, and N<sub>2</sub>O as variable gases.
```

• Possibly others. E.g. SO₂ and CFCs.

- SSU model
 - Developed for NCEP reanalysis
- Model that accounts for Zeeman-splitting.
 - Earth rotation Doppler shift
 - Channel polarisation
- New CRTM transmittance module
 - Multiple algorithm
 - Addition of trace gases.
- Line-by-line model updates
 - Improvement in microwave continuum.
 - Recomputation of infrared transmittances.

- Line-by-line model updates
 - Improvement in microwave continuum.
 - Recomputation of infrared transmittances.

• AER, Inc. is working on improving the microwave continuum in their MonoRTM model. Currently, the CRTM is trained using Liebe model; switch to MonoRTM when work completed.

 Recompute the infrared transmittances using latest version of LBLRTM (also from AER, Inc.)

- Current Status
 - Preamble
 - Components
- Development
 - Transmittance models
 - Emissivity models
 - Radiative Transfer schemes

- Infrared Emissivity
 - Land emissivity
 - Ocean Emissivity
- Microwave Emissivity
 - Empirical models for MHS and SSMIS.
 - Low-frequency ocean emissivity model.
 - Multilayer soil and vegetation land emissivity model.
 - Improvement of physical snow emissivity model.

- Infrared Emissivity
 - Land emissivity
 - Ocean Emissivity
- Microwave Emissivity
 - Empirical models for MHS and SSMIS.
 - Low-frequency ocean emissivity model.
 - Multilayer soil and vegetation land emissivity model.
 - Improvement of physical snow emissivity model.

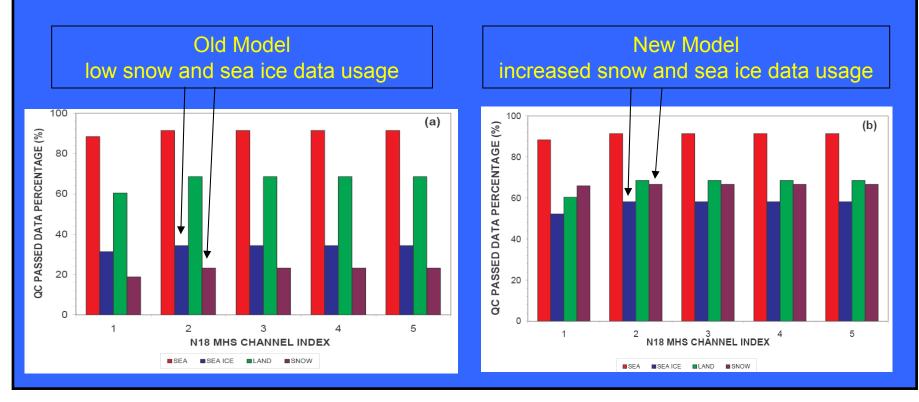
- Infrared Emissivity
 - Land emissivity
 - Ocean Emissivity
- Land emissivity

 Improvements are being made to the IR land surface emissivity LUT. Evaluation of current and new LUT that matches the NCEP GFS surface types

Ocean emissivity

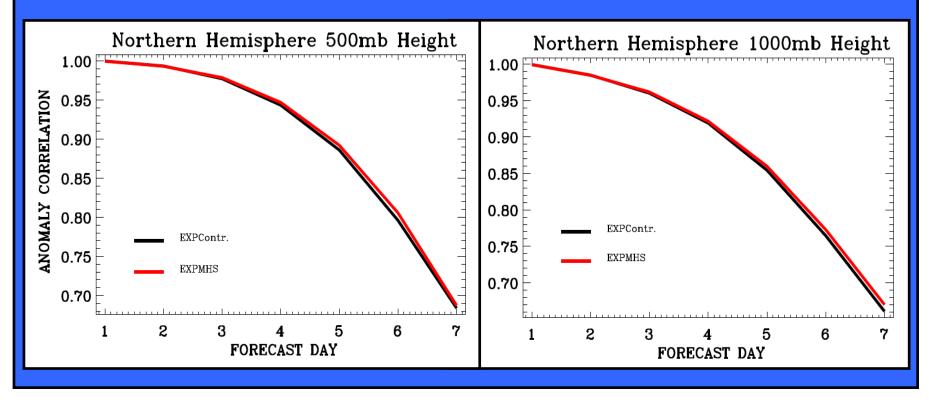
Improving interpolation of emissivity LUT to use new averaged quadratic interpolation module for continuous derivatives.
Adding temperature dependence to LUT data.

- Infrared Emissivity
 - Land emissivity
 - Ocean Emissivity
- Microwave Emissivity
 - Empirical models for MHS and SSMIS.
 - Low-frequency ocean emissivity model.
 - Multilayer soil and vegetation land emissivity model.
 - Improvement of physical snow emissivity model.



- Microwave Emissivity
 - Empirical models for MHS and SSMIS.

ow-frequency ocean emissivity model


•Assimilation impact of new MHS Snow and Sea Ice emissivity model.

- Microwave Emissivity
 - Empirical models for MHS and SSMIS.
 - ow-frequency ocean emissivity model
- Assimilation impact of new MHS Snow and Sea Ice emissivity model.

- Microwave Emissivity
 - Empirical models for MHS and SSMIS.
 - Low-frequency ocean emissivity model.
 - Multilayer soil and vegetation land emissivity model.
 - Improvement of physical snow emissivity model.
- Implementation of Masahiro Kazumori's (JCSDA Visiting Scientist from JMA) low-frequency (<20GHz) ocean surface emissivity model.
- Refactored Guillou and Ellison ocean permittivity models.
- Implemented new interpolation module for the ocean surface height variance LUT. Data is interpolated as a function of frequency and wind speed.
- •FASTEM-3 will also be implemented in calling code for f>20GHz. Use new Guillou and Ellison modules?

- Microwave Emissivity
 - Empirical models for MHS and SSMIS.
 - Low-frequency ocean emissivity model.
 - Multilayer soil and vegetation land emissivity model.
 - Improvement of physical snow emissivity model.

Multilayer model:

• See poster A01: "Radiative Transfer in Vertically Stratified Soil and Vegetation Boundary" by F.Weng.

Physical snow model

- Improving the computation of the optical properties of snow for higher frequencies.
- Addition of extra layers

- Current Status
 - Preamble
 - Components
- Development
 - Transmittance models
 - Emissivity models
 - Radiative Transfer schemes

- Algorithms for scattering radiative transfer
 - ADA speedup
 - Fast 2- and 4-stream models
 - SOI integration
- Other
 - Comparisons between CRTM and Xu Liu's PCRTM.
 - Implementation of CRTM in WRF-Var for cloudy radiance assimilation.
 - Optical parameters for clouds and aerosols.
 - Field-of-view considerations.

- Algorithms for scattering radiative transfer
 - ADA speedup
 - Fast 2- and 4-stream models
 - SOI integration
- Other
 - Comparisons between CRTM and Xu Liu's PCRTM.
 - Implementation of CRTM in WRF-Var for cloudy radiance assimilation.
 - Optical parameters for clouds and aerosols.
 - Field-of-view considerations.

- Algorithms for scattering radiative transfer
 - ADA speedup
 - Fast 2- and 4-stream models
 - SOI integration

• It was found that the IBM Fortran95 intrinsic matrix multiplication function was extremely slow.

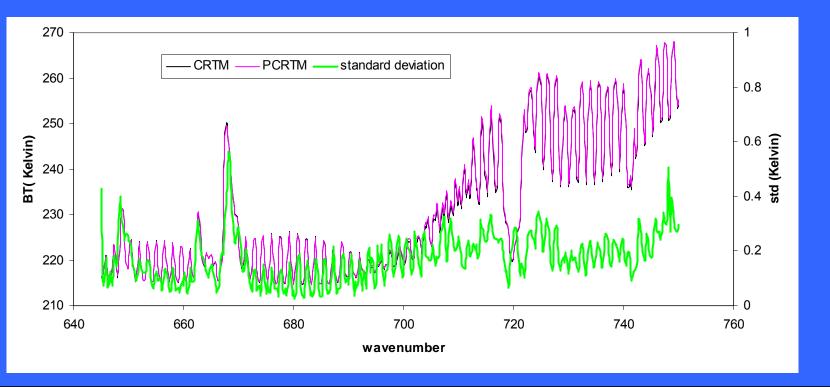
- Added faster matrix multiplication functions.
- Used library calls (e.g. ESSL, MASS libraries)
- Computational efficiency is memory-usage sensitive.
 - Refactored modules that retain the forward calculations.

• Changes save about 30% CPU time. Still not enough for cloudy radiance assimilation.

- Algorithms for scattering radiative transfer
 - ADA speedup
 - Fast 2- and 4-stream models
 - SOI integration
- Work is continuing on the development of fast 2- and 4-stream + observation angle algorithms.
- The 4-stream + observation angle method is generally accurate for microwave and infrared simulations.
- Requires a better treatment of cloud and aerosol phase functions.
- The new 2- and 4-stream + observation algorithms use the same adding code as the ADA, but a fast transmittance, reflectance, and source function calculation in each layer is performed using a matrix operator method.

- Algorithms for scattering radiative transfer
 - ADA speedup
 - Fast 2- and 4-stream models
 - SOI integration
- Yoshihiko Tahara visited from JMA in February to begin the integration of the SOI algorithm (from UWisc) in the CRTM.
- Main problem encountered is the unavailability of level temperatures (GSI only provides layer temperatures.)
- Different methods for layer→level conversion impact speed and accuracy.
- Need to remove use of public module variables in SOI modules for thread safety.

- Algorithms for scattering radiative transfer
 - ADA speedup
 - Fast 2- and 4-stream models
 - SOI integration
- Other
 - Comparisons between CRTM and Xu Liu's PCRTM.
 - Implementation of CRTM in WRF-Var for cloudy radiance assimilation.
 - Optical parameters for clouds and aerosols.
 - Field-of-view considerations.

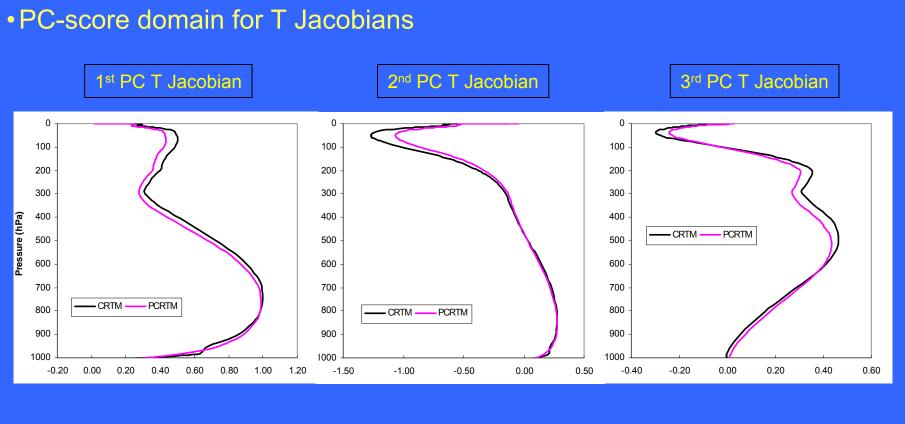

Development – Radiative Transfer

• Other

Comparisons between CRTM and Xu Liu's PCRTM.

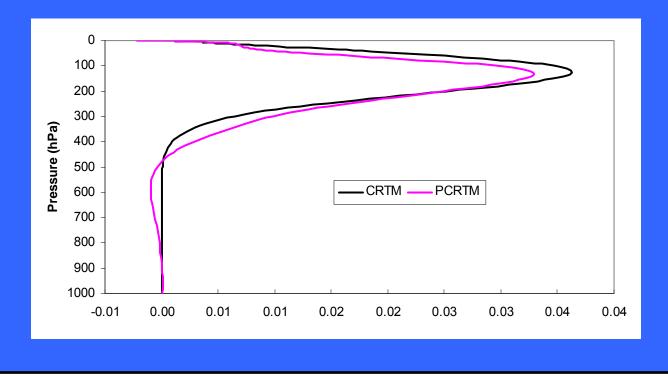
plamantation of CDTM in M/DE Mar for aloudy radiance againtilation

Forward spectral domain for IASI



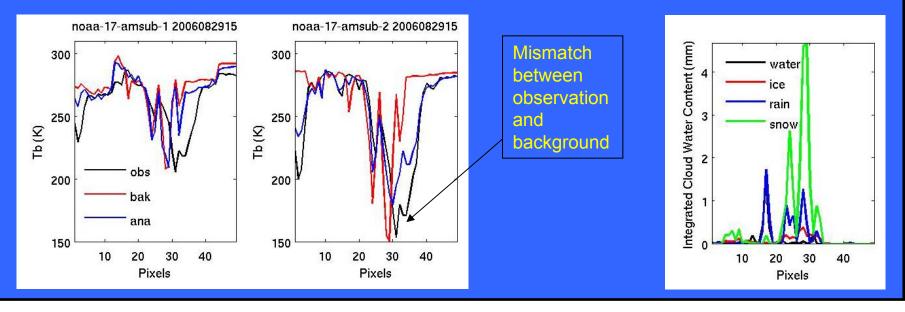
Comparisons between CRTM and Xu Liu's PCRTM.

alementation of CDTM in M/DE Mar for aloudy radiance assimilation



Development – Radiative Transfer

- Other
 - Comparisons between CRTM and Xu Liu's PCRTM.
 - palementation of CDTM in M/DE Var for aloudy radiance accimilation
- Atmospheric domain for T Jacobians (IASI 645cm⁻¹)



- Development Radiative Transfer
- Other
 - Comparisons between CRTM and Xu Liu's PCRTM.
 - Implementation of CRTM in WRF-Var for cloudy radiance assimilation.

• Work performed by Z.Liu's group at NCAR/AFWA, looking at N17 AMSU-B T_B along CloudSat path; No QC was performed. Ch.1,2 calculations look good despite location mismatches.

- Other
 - Comparisons between CRTM and Xu Liu's PCRTM.
 - Implementation of CRTM in WRF-Var for cloudy radiance assimilation.
 assimilation.

Development – Radiative Transfer

Optical parameters for clouds and aerosols.

Field_of_view considerations

- Cloud and Aerosol Optical parameters.
- LUT data are being improved.
- Interpolation method to keep derivatives continuous.
- •Non-spherical particle data added (from Ping Yang at TAMU)
- Refactored modules that retain the forward calculations.

• Field of View.

• See presentation (S3): "*Microwave Radiative Transfer at the Sub-Field-of_View Resolution*" by T.Kleepies. International TOVS Study Conference, 16th, ITSC-16, Angra dos Reis, Brazil, 7-13 May 2008. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2008.