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Retrieval algorithms (1)

Theoretical considerations:

Synergy (from the Greek syn-ergo, working together) refers to the phenomenon in which two or more 
discrete influences or agents acting together create an effect greater than that predicted by knowing only 
the separate effects of the individual agents.

Four synthetic types of synergy:
additive synergy (A), un-mixing synergy (B), indirect synergy 
(C) and de-noising synergy (D). TB1 and TB2 are the satellite 
observations, ε1 and ε2 are the corresponding instrument noise, 
and V1 and V2 are the geophysical variables to retrieve.

Retrieval algorithms (2)
Retrieval approaches:

-In the k-NN (Nearest Neighbours) retrieval approach, a “reference” dataset, R, is built that includes a 
number E of situations described by a set of geophysical variables (i.e., the variables to be retrieved) and 
by a set of the associated satellite observations: R = {(GEOi, TBi); i = 1, . . . ,E}. The Brightness 
Temperatures (TBs) can be real observations or radiative transfer simulations (the later is chosen in this 
paper). The k closer situations in R are used to define the inversion. Few approaches can be used: if only the 
closest situation is taken (k = 1), this scheme is a pattern recognition algorithm. The k-NN algorithm is a 
nonlinear model. It is also a truly multivariate method. However, it should be noted that the method is 
entirely based on a distance in the satellite observation space. This distance gives the same weight to each 
of the TB inputs and no information content analysis on the GEO is used. If some non-pertinent channels 
are included in the TB-space, they will not add any useful information and even worse, they can contaminate 
the actual pertinent information.

-Multiple LINear regression (LIN) is a very simple and classical technique. For more details, details to 
present this method, see any elementary statistical textbook. We just mention here that the LIN model is 
truly multivariate. Furthermore, contrarily to the k-NN approach, only the pertinent information is used 
from the inputs for the retrieval of a particular output. This means that meaningless information will not 
pollute the retrieval. By definition, and contrarily to k-NN, the LIN approach is not nonlinear and can 
suffer from outliers, saturations, interactions between inputs, and any nonlinear behaviour. This technique 
is often used as a reference test for the NN method presented next.

- NN techniques have proved very successful in developing computationally efficient algorithms for remote 
sensing applications. The Multi-Layered Perceptron (MLP) model [Rumelhart et al., 1986] is selected here. 
It is a nonlinear mapping model: given an input TB, it provides an output f in a nonlinear way. The MLP model 
is defined by the number of input neurons (i.e., the size of the inputs, number of channels), the number of 
outputs (i.e., the size of the geophysical variables to retrieve = 3 x 43 = 129) and the number of neurons in 
the hidden layers that control the complexity of the model.

Conclusion (1)
k-NN method:

The synergy cannot be said to be an improvement for retrieval of temperature, water vapour or ozone 
profile.

LIN method:

The input information being additive in a linear model, the more information available, the best the 
retrieval. As a consequence, the combination of the four instruments provides a synergy effect, improving 
the retrieval of the temperature by up to 0.5 K near the surface, and never degrading the retrieval of the 
best instrument.
For water vapour profile retrieval, the synergy impact is very positive, the RMS error is lower at every 
atmospheric layer than any individual-instrument retrieval. The benefit can be large, especially near the 
surface where the RMS error can decrease from ~13% to ~10% (i.e., a ~25% decrease of the error).
Finally for the ozone profile retrieval, the benefit of the synergy can be large, especially at low altitude 
where the RMS error can decrease from ~50% to ~35% (i.e., a ~30% decrease of the error). The retrieval 
of the ozone integrated content is consistent with ozone profile retrieval.

NN method:

Combining the four instruments improves considerably the retrieval of the temperature, especially near the 
surface where the RMS error decreases from 1.5 K (IASI retrieval) to about 0.5 K for the combined 
configuration. Like for the LIN method, the more information available in the inputs, the best the retrieval.
The synergy impact is very positive for the retrieval of the water vapour profile, the RMS error is lower at 
every atmospheric layer than any individual instrument retrieval. The synergy from the four instruments is 
always positive with an important decrease of the RMS error (from 10 to 7% RMS error in the lower 
layers).
It can be seen that the merging of all the information is the best retrieval of the ozone profile for most of 
the atmospheric layers. Again, the benefit of the synergy can be large, especially at low altitude where the 
RMS error can decrease from ~37% to ~22% (i.e., a ~40% decrease of the error).

Conclusion (2)
Comparing methods:

The NN and LIN outperform the k-NN methods, with very interesting levels of accuracy especially when 
compared to GOME-2 errors budget. This study clearly shows that the NN and LIN make the difference 
with the other method when the relationship from the satellite observations to the geophysical parameter 
to retrieve (i.e. the water vapour or the ozone) is complex and nonlinear; the impact is less important but 
still exist for simpler problems such as the retrieval of the temperature.

Measure of the synergy:

For the temperature retrieval, the k-NN algorithm is close to 100% with some gain in the lower 
atmosphere, up to 800 hPa, but with a negative effect on higher levels. The LIN method benefits from the 
synergy for all the atmospheric layers, in particular close to the surface. The impact can be important with 
an improvement of the retrieval statistics by more than 80% next to the surface and close to 20% in the 

middle troposphere. The NN inversion benefits significantly from the synergy: the retrieval errors can be 
reduced by a factor 2 at the surface.
For the water vapour profile retrieval, the k-NN method is not optimal to merge information from the 
various captors: The impact of using simultaneously the four instruments (GOME-2, MHS, AMSUA and 
IASI) is always negative, with an increase of errors up to 20%. The LIN method has a synergy factor close 
to 100% (meaning that no synergy is observed for the retrieval of water vapour) for higher atmospheric 
layers but the impact is quite positive for layers lower than 300 hPa. The NN method benefits from the 
synergy: The synergy factor reaches 140%, meaning that the errors are decreased by 40% when the four 
instruments are used together.
For the ozone retrieval, the LIN and NN methods appear to be quite optimal for some layers to merge 
information from the various captors while for the k-NN method the impact of using simultaneously the 
four instruments is mostly negative, with an increase of errors up to 20%. The LIN and NN methods have a 
synergy factor close to 105% meaning that a small synergy is observed for stratospheric layers (pressure ≤
120 hPa) but the impact is quite positive for higher pressures. Both methods benefit from the synergy: The 
synergy factor reaches 125% for NN method, meaning that the errors, for these layers, are decreased by 
25% when the four instruments are used together.

Retrieval results (1): the different instrument combinations with the different methods
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Retrieval results (3): A measure of the synergy
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The geophysical database
ECMWF operational analyses:

The atmospheric profiles and surface properties from the 6-hourly operational global analyses from the 
Integrated Forecasting System (IFS) of the European Center for Medium Range Forecasting (ECMWF) are 
at the origin of the datasets used in our study. In order to run accurate radiative transfer simulations, the 
following information is kept: the temperature, water vapour and ozone profiles on 43 pressure levels 
ranging from 1000 to 1 hPa (these levels have been interpolated for the initial 21 levels in order to be used 
with the RTTOV code) and surface properties such as the temperature. Selecting cloud-free oceanic cases, 
few millions atmospheric and surface situations are extracted over one-year of data.
Retrieval algorithms cannot handle this huge amount of data. To reduce the size of this geophysical dataset 
while keeping its spatial and temporal variability a sampling procedure has been used [Aires & Prigent, 2007]

Spatial location of the 10 000 atmospheric situations over ocean used to train and test the retrieval methods. The 
colour shades represent the temperature (K) at the surface layer for illustration purpose.

Introduction

A wealth of Earth satellite observations is now available, covering the entire globe, and providing a large 
diversity of information over a broad frequency range (UV, visible, infrared and microwave), in order to 
obtain a global and continuous monitoring of the state of the atmosphere. Space agencies have designed 
satellite platforms that include instruments from the different regions of the electromagnetic spectrum. 
In parallel, accurate Radiative Transfer Models (RTM) have been developed to simulate the responses of 
these multi-spectral observations to atmospheric changes in composition or temperature. However, the 
retrieval accuracy of key variables such as temperature, water vapour or ozone profiles is still not always 
satisfying.

In order to develop new approaches to perform satellite data fusion, it is necessary first to understand the 
basic concepts behind synergy. To illustrate the various types of synergy, it is a good strategy to use simple 
schematic model. Then, a methodology needs to be put in place to measure the synergy. Since assimilation is 
the most widely used technique to fusion data, the traditional information content analysis is the first 
candidate. To test the potential of this method, we apply it to selected atmospheric parameters and 
wavelength bands under specific instrument geometry for the MetOp-A satellite. This platform provides 
coincident observations in the visible, GOME-2 (Global Ozone Monitoring Experiment) instrument, in the 
infrared, IASI (Improved Atmospheric Sounding in the Infrared) instrument, and in the microwaves, 
AMSU-A (Atmospheric Microwave Sounding Unit - A) and MHS (Microwave Humidy Sounder),  with nadir 
geometries. We concentrate on the major atmospheric parameters, namely temperature, water vapour and 
ozone profiles for which the selected MetOp-A instruments are particularly sensitive.

The satellite observation databases

The satellite instruments:

- AMSU-A (Advanced Microwave Sounding Unit-A) measures the oxygen band between 50 and 60 GHz, for 
the retrieval of atmospheric temperature profiles (15 channels).
- MHS (Microwave Humidity Sounder) is designed to measure the atmospheric water vapour profile (5
channels).
- IASI (Infrared Atmospheric Sounding Interferometer) has been designed to retrieve temperature and 
water vapour profiles in the troposphere and the lower stratosphere, as well as measure concentrations of 
ozone, carbon monoxide, methane and other compounds between the wavelengths of 3.2 and 15.5 microns 
(8461 channels).
- GOME-2 (Global Ozone Monitoring Experiment) provides vertical profiles or total column amounts for 
each of the gases (ozone, nitrogen dioxide, sulphur dioxide and other trace gases) and ultraviolet radiation. 
These profiles are representative of the lowermost 50 kilometres of the Earth’s atmosphere (4096
channels).

Jacobians MHS Jacobians AMSU-A Jacobians IASI

Simulation of the synthetic database
The radiative transfer simulations:

- RTTOV-8.7 radiative transfer model originally developed at ECMWF [Eyre, 1991] and now supported by 
EUMETSAT provides rapid simulations of radiances for satellite infrared and microwave radiometers for a 
given atmospheric state vector. Over ocean, the emissivities are computed by the FASTEM-3 [Deblonde & 
English, 2001] surface emissivity model.
- 4A (Automatized Atmospheric Absorption Atlas) is a fast and accurate Radiative Transfer Model for the 
infrared co-developed by LMD and Noveltis with the support of CNES [Scott & Chédin, 1981]. 4A 
computates transmittance and radiance, using a comprehensive database (atlases) of monochromatic. optical 
thicknesses for up to 43 atmospheric molecular species.
- LBLDOM code [Dubuisson et al., 1996] allows solving the radiative transfer equation (RTE) from the 
Discrete Ordinates Method [DOM; Stamnes et al.,1988], at each step of a line-by-line model (LBL). 
Radiances can be calculated at any atmospheric level in the solar spectral range, with a spectral resolution 
of about 0.01 cm−1. The atmosphere is assumed to be vertically inhomogeneous and stratified into plane-
parallel layers.

GOME-2 spectrum

IASI spectra

Information content: Retrieval and comparison 
Theoretical aspects:

The most widely used technique exploiting synergy among Earth observation instruments is, without any 
doubt, the assimilation [Kalnay, 2002]: a wide spectrum of visible, infrared and microwave satellite 
observations are combined with model forecasts and in situ measurements to better characterize and 
predict the state of the atmosphere, continental surfaces or oceans. In association to the assimilation 
technique, various tools have been designed to estimate the theoretical quality of retrievals. Since we are 
interested in this study by the synergy, it is essential to test this approach first. Assimilation and 
information content analysis share the same theoretical hypothesis: Gaussian character of the stochastic 
variables, linearization around the First Guess (FG), same observation, radiative transfer and a priori
uncertainties. Application of the information content technique on IR/MW measurements is fully described 
in Aires (2010) and Aires et al. (2010).

•Strong dependency to the Jacobians => Need 
to perform statistics on the dataset.

•Estimation too optimistic for IASI retrievals 
=> We cannot measure the synergy.

•Retrievals of temperature and water vapour 
profiles individually are better than 

simultaneous retrieval of both parameters.
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Retrieval results (2):  Restitution of the ozone content

Correlation coefficients between the ozone integrated 
content obtained from simulations and the ozone integrated 

content obtained from inversions.

RMS error statistics (in %) for the retrieval of the ozone 
integrated content obtained from simulations and the 
ozone integrated content obtained from inversions.
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