SSMIS Radiance Assimilation, Calibration Anomaly Mitigation and Assimilation Results From F18

Steve Swadley¹, Gene Poe¹, Nancy Baker¹, Ben Ruston¹, William Bell², Dave Kunkee³ and Don Boucher³

¹Naval Research Laboratory, Monterey, CA, USA
 ²European Centre for Medium Range Forecasting, Reading, UK
 ³The Aerospace Corporation, Los Angeles, USA

ECEMWF

Outline

- F16 and F17 SSMIS Calibration Anomalies
- Post-Launch Mitigation Strategies
- Analysis and Verification of Root Causes
- F16 and F17 SSMIS Assimilation Results
- F18 SSMIS Preliminary Results
 - Radiometric Performance
 - Assimilation Results
- Path Forward for F19 and F20 SSMIS

SSMIS Instrument

Active Scan

	24 Channel Mi	Channel Microwave Imager/Sounder				
	Conical Scan (53° Incidence Angle)					
0.61 m Graphite Reflector (VDA/SiO,						
		Res. (km)	Freq. (GHz)			
	Imaging	12.5 km 25.0 km	91 - 183 (5) 19 – 37 (5)			
ingle Footprint	LAS T	37.5 km	50 - 60 (8)			
14 KM 3 x 3 Footp Average	LAS Hum.	37.5 km	150, 183 (3)			
12.5 KM 1.9 Sec Direction of Scan Alor	UAS T	75.0 km	60-63 (5)			

Launch Dates: F16 (10/2003), F17 (11/2006), F18 (10/2009)

- FNMOC and ECMWF global NWP analyses with RTTOV-8/9 were used to produce OB-BK departures for TDR/SDR and EDR products
- Departures were analyzed in combination with the DGS software package developed by Mike Werner (Aerospace)
- SSMIS Cal/Val team using these tools was able to successfully pinpoint the physical mechanisms causing the calibration anomalies

States Color Ballion Auge TRAKAng	
View from	Sup

0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00

F16 Calibration Anomalies

Reflector Emission

- Reflector Rim Temperature Cycle Dominated by Earth and Spacecraft Shadowing
- OB-BK Patterns Showed Frequency Dependent Reflector Emissivity, ε_{Rflct}
 - 1.5–2K OB-BK Jump at 50-60 GHz
 - 5-7K OB-BK Jump at 183 GHz

Warm Load Intrusions

- Direct and Reflected Solar Intrusions onto Warm Load Tines
- 1-1.5K Depression in TBs
- Field-of-View Obstructions
- Moon Intrusion into Cold Sky Reflector
- Random Noise Spikes

F17 Calibration Anomalies

Reflector Emission

- Reflector Rim Thermistor moved to rear of graphite epoxy reflector shell (True for all remaining SSMIS)
- Reflector Temperature Cycle Dominated by Solar Panel Shadowing for Most of Year, Earth and Spacecraft Shadowing occur during annual cyclle
- Frequency Dependent Reflector Emissivity, ϵ_{Rflct}
 - 1.5–2K OB-BK Jump at 50-60 GHz
 - 5-8K OB-BK Jump at 183 GHz

Warm Load Intrusions

- Fence Successful in Mitigating Direct Solar
 Intrusions
- Reflected Solar Intrusions onto Warm Load Tines limited to High Solar Elevation angles

Residual Doppler Signature

- Additional Noise due to Flight S/W Mods, Fewer Calibration Samples
- Field-of-View Obstructions
- Moon Intrusion into Cold Sky Reflector
- Random Noise Spikes

Time series of Scan Averaged OB-BK for SSMIS Channels 5 and 11

$$\Delta T_{Emis} = T_{Obsvd} - T_{Scene} = \varepsilon(v)_{Rflct} \left(T_{Rflct} - T_{Scene} \right)$$

SSMIS Calibration Anomaly Mitigation Unified Pre-Processor

NRL and UK Met Office designed, developed and implemented a Unified Pre-Processor (UPP) to correct the F16 calibration anomalies

UPP SSMIS provides radiances of sufficient quality for NWP assimilation

SSMIS now plays larger role in the NPOESS gap mitigation

Contributors:

Steve Swadley (NRL) and William Bell (Met Office), Gene Poe, Nancy Baker and Ben Ruston (NRL), Dave Kunkee, Ye Hong, Mike Werner and Don Boucher (Aerospace), Sana Mahmood (Met Office), Yiping Wang, Randy Pauley and Jeff Tesmer (FNMOC), Karl Hoppel (NRL DC), Yong Han (JCSDA), Shannon Brown and Ezra Long (NASA JPL), Aluizio Prata (USC), and ECMWF

DMSP SSMIS UPP Update

UPP V2 includes

- Reflector Emission Corrections (F16 and F17)
- Spatial Averaging to reduce NEΔT to 0.15 0.25 K level (NRL only)
- Uses Operational NGES Fourier Filtered Gain Files to Correct Gain Anomalies
- Produces ASCII and BUFR TDR output files at full and/or filtered resolution
- Performs Scan Non-uniformity corrections
- SSMIS UPP V2 Operational at FNMOC (F1607/2008, F17 04/2009, F18 Apr '09)
- FNMOC distributes UPP data to NESDIS for use by the NWP Community

JPL

Precise Effective Conductivity Measurements Of Reflector Surfaces Using Cylindrical TE01 Mode Resonant Cavities

Aluizio Prata, Jr. (USC) Ezra M. Long and Shannon T. Brown (JPL)

For Large Effective Conductivities, the approximate v and h polarized emissivities are:

$$\varepsilon_{v} \cong \sqrt{\frac{16\pi \upsilon \varepsilon_{0}}{\sigma}} \sec \theta_{i}$$

- U : Frequency [Hz]
- $\mathcal{E}_0 \quad \begin{array}{c} : \text{ Free-space permittivity} \\ \text{ [F/m]} \end{array}$
- θ_i : Surface Incidence angle

Ideally, we want an ε_{Rflct} approaching that of Pure Al

$$\mathcal{E}_h \cong \mathcal{E}_v \cos^2 \theta_i$$

Effective Conductivity, σ [MS/m]

Example:

183 GHz Pure Al at 300 K $\Theta_i = 18^{\circ}$ $\sigma = 36.59$ MS/m

 $\varepsilon_v = 0.00157$ $\varepsilon_h = 0.00142$

Layered Tape (P75S/ERL1962) forming the Epoxy Shell

***VDA: Vapor Deposited Aluminum**

Reflector Emission Anomaly Summary

- NWP and visualisation tools were key to understanding and mitigating instrument calibration anomalies
- New measurement techniques have been developed for pre-launch characterisation of reflectors, and should reduce risk for future MW reflectors
- High Reflector Emissivity Traced to the VDA Coating Process
- F18 Reflector replaced with spare (15-17 MS/m)
- Verification of Pre-Flight measurement using on-orbit F18 data

NRL Adjoint Observation Sensitivity Tools

Assessing Impacts of Observing Systems

The Good News

SSMIS UPP Data Providing Positive Operational Impacts with Navy 4D-Var Analysis System

NAVDAS-AR Operational Radiance Observation Impacts

Adjoint Sensitivity Method

Shows the impact an individual observing system, sensor or select channel had in reducing the 24 hour global forecast error as measured by a moist energy norm integrated over the troposphere and lower stratosphere (1000–150 hPa)

NAVDAS-AR Operational SSMIS Channel Specific Impacts

SSMIS UPP Data Impacts Impact of F17 is lower due to the loss of Ch 4

-5.0

-2.5

OB-BK Analysis

SSMIS OB-BK ECMWF RTTOV-8 Ch. 11 183.31±1.0 GHz H DTG: 2009110406 00234-00236

No. Scenes: 638218 Min -20.00 MEAN 0.58 Max 19.93 SDEV 3.39

0.0

2.5

5.0

DMSP F-18 SSMIS Cal/Val Status Preliminary Results

Results derived using OB-BK departures from both ECMWF and NOGAPS/NAVDAS-AR Analyses

- Scan Non-Uniformity (FOV) Edge of Scan biases present
- Residual Doppler Signature is small compared to F17
- Results indicate a Very Low-Emissive Reflector
- Minor Warm Load Solar Intrusions are occurring

DMSP F-18 SSMIS Cal/Val Status Sensor Performance - ΝΕΔΤ

_ _ _ _ * _ _ _ *

		SSMIS Radiometer	r Warm-load NEDT	(K) (Trec=305K)		Ave
Channel Grouping	Ch	F-16	F-17	F-18 (T/V**)	Spec.]
(1	0.22	0.24	0.19 /0.19	0.40	1
	2	0.24	0.21	0.19 /0.19	0.40	1
	3	0.21	0.22	0.21 /0.20	0.40	1
	4	0.23	_	0.22 /0.22	0.40	1
Lower Atmos.	5	0.24	0.22	0.23 /0.22	0.40	1
Sounding (LAS) 🖌 [6	0.30	0.27	0.25 /0.24	0.50]
U ,	7	0.36	0.30	0.24 /0.23	0.60	1
	8	0.55	0.58	0.50 /0.47	0.88	1
I [9	0.66	0.74	0.68 /0.68	1.20	7
	10	0.67	0.47	0.65 /0.60	1.00	1
	11	0.81	0.66	0.80 /0.74	1.25]
Imaging (IMG)	12	0.40	0.33	0.34 /0.35	0.70]
	13	0.42	0.36	0.32 /0.33	0.70]
\checkmark	14	0.38	0.41	0.39 /0.39	0.70]
	15	0.44	0.26	0.32 /0.31	0.50]
	16	0.25	0.22	0.23 /0.25	0.50]
	17	0.21	0.19	0.18 /0.18	0.30	
	18	0.43	0.29	0.22 /0.21	0.30	
\cdots	19	1.64	1.40	1.20 /1.28	2.38	
Upper Atmos.	20	1.46	1.35	1.10 /1.16	2.38	
Sounding (UAS) 🖌 🛛	21	1.05	1.02	0.80 /0.84	1.75	
	22	0.74	0.73	0.55 /0.58	1.00]
Zeeman Affected	23	0.46	0.42	0.35 /0.36	0.60	
	24	0.23	0.22	0.20 /0.20	0.35	
_			Avoradi	na: Alona Troc		nnc

Averaging

3x3

1x2

3x3

6x6

Averaging: Along Track by Along Scan

F18 F18 Scan-Averaged OB-BK **OB-BK Time Series** F17 F17 **OB-BK** Scan-Averaged OB-BK **Time Series**

$$T_{Scene} = T_{OB} - \varepsilon_{Rflct}(\nu) \left[T_{Rflct} - T_{Scene} \right]$$

Assume Reflector Emissivity can be estimated by the slope of an ensemble of:

$$\left[T_{Rflct} - T_{OB}\right] \text{ versus } \left[T_{OB} - T_{BK}\right]$$

$$\mathcal{E}_{Rflct}(\nu) \approx \frac{T_{OB} - T_{BK}}{T_{Rflct} - T_{OB}}$$

F17

Ch. 3

10

5

O

-5

-10

-50

Ó

0B-BK [K] Ch. 3

OB-BK

 $\begin{bmatrix} T_{Rflct} - T_{OB} \end{bmatrix}$ versus $\begin{bmatrix} T_{OB} - T_{BK} \end{bmatrix}$

50

SSMIS T_Rflet-TB OB [K] Ch. 3 DTG: 2010012406 100

T_{Rflct}-OB

F16 Reflector Emissivity Estimates LAS Channels 3-7, 24, DTG:2009110406

F17 Reflector Emissivity Estimates LAS Channels 3-7, 24, DTG:2009110406

F18 Reflector Emissivity Estimates LAS Channels 3-7, 24, DTG:2009110406 Verifies Pre-Flight Conductivity Measurements

F18 SSMIS LAS Assimilation Results Beta OPS 05-12 April 2010

F18 SSMIS LAS Assimilation Results Beta OPS 05-12 April 2010

Adjoint Sensitivity Impacts for each F18 Channel assimilated Summed over First 8 days of the Beta OPS NAVDAS-AR Run at FNMOC

FNMOC and NESDIS Coordinating the Operational Transfer of F18 SSMIS UPP Data

F18 UPP to be made Available possibly as early as next week

F-18 SSMIS LAS Assimilation Results Assimilation Trials: 09 Jan – 19 Feb 2010

- Effective Conductivity Measurements have been Verified on Orbit for F18 Reflector
- F19 and F20 SSMIS Reflectors have been Re-Coated Measured Effective Conductivities ~ 34-35 MS/m
- Effective Conductivity Measurements Should be a Required Pre-Flight Process for MW Reflectors
- Lessons Learned Advantageous to future MW Imager/Sounder Programs
- SSMIS will continue to play Large Role in MW Imaging and Sounding for the next 10 Years

- There are great, but yet to be fully exploited advantages, in having the sounding and imaging channels in the same geometry
- Conical Imager/Sounders with constant resolution across scan provide self-consistent T, q and hydrometeor information (RR, CLW, TVAP)
- NWP Forecast Accuracies are very sensitive to key aspects of sensor data records:
 - Number of Channels
 - Vertical Sensitivity Distributions
 - Noise Levels for each channel
- Precise Calibration Remains the Technical Challenge

Thank You

Questions ?

Backup Slides

F-18 SSMIS LAS Assimilation Results

NRL F-15 SSMIS UPP NAVDAS-AR AR_STRATO Radiance Monitor

Global OB-BK Departure Statistics Strict QC

DSMP F-18 SSMIS UPP Update

	F—18 SSMIS L D ssr	JPP 0B-BK)TG: 200911(nis_stats_2009	Ch. 4 54.4 0406 110406	4 GHz V	
No. Scenes:	51659	Min Max	-1.50 1.68	MEAN SDEV	0.16 0.30
90 (125, 150				-30	

WRF Observation Impact

Image Courtesy of Tom Auligné (NCAR)

Adjoint Sensitivity Method

Shows the impact an individual observing system, sensor or select channel had in reducing the 24 hour forecast error as measured by a moist energy norm integrated over the troposphere and lower stratosphere (1000–150 hPa)

NAVDAS-AR F-18 Assimilation Trials SSMIS OB-BK StdDevs

SSMIS LAS Scan Dependence

OB-BK (ECMWF)

F-16 SSMIS LAS Scan Dependence

F-17 SSMIS LAS Scan Dependence

F-18 SSMIS LAS Scan Dependence

- SSMIS Unified Pre-Processor Version 2.1 now running operationally at FNMOC for both F-16 and F-17
- SSMIS UPP Software Maintained by NRL
- Un-Averaged BUFR files distributed to NOAA by FNMOC
- UPP V2.1 includes:
 - Reflector Emission Corrections, with sensor and channel dependent reflector emissivities
 - Sensor dependent Reflector Temperature model
 - Level of Spatial Averaging controlled at the script level
 - Full resolution BUFR files now being distributed by FNMOC
- Code modifications in place for F-18 SSMIS
 - Ready for Distribution once Scan Non-Uniformity Corrections are finalized

DMSP SSMIS UPP Update

UPP V2 includes

- Reflector Emission Corrections (F-16 and F-17)
- Spatial Averaging to reduce NEΔT to 0.15 0.25 K level
- Uses Operational NGES Fourier Filtered Gain Files to Correct Gain Anomalies
- Produces ASCII and BUFR TDR output files at full and/or filtered resolution
- Performs Scan Non-uniformity corrections
- SSMIS UPP V2 Operational at FNMOC (F16 Jul '08, F17 Apr '09, F18 Apr '09)
- FNMOC distributes UPP data to NESDIS for use by the NWP Community

F-18 SSMIS LAS Assimilation Results

NAVDAS-AR Operational Radiance Observation Impacts

Adjoint Sensitivity Method

Shows the impact an individual observing system, sensor or select channel had in reducing the 24 hour global forecast error as measured by a moist energy norm integrated over the troposphere and lower stratosphere (1000–150 hPa)

F-18 SSMIS Assimilation Trials

NRL F-18 SSMIS UPP NAVDAS-AR AR_STRATO Radiance Monitor

Global OB-BK Departure Statistics Strict QC

 Salid Blue = Un-Corrected
 Salid Red = Bias Carrected
 Datted Red = ± 1 SDEV

 Red Channel No. (Actively assimilated)
 Black Channel No. (Passively assimilated)

 Dates Cavered : 2010011100 to 2010021400
 Number of 6-hour cycles : 140

F-18 SSMIS Assimilation Trials

F-18 SSMIS LAS Assimilation Results

JPL VDA Applied to Aggressively Roughened Surface

VDA* Layer

Carbon Fibers of the Unidirectional Cross-Layered Tape (P75S/ERL1962) forming the Epoxy Shell

32 GHz $\sigma_{\rm E}$ = 3.4 MS/m 55 GHz ε = 0.0027

***VDA: Vapor Deposited Aluminum**

USC

JPL

VDA Applied to Smooth Surface

Carbon Fibers of the Unidirectional Cross-Layered Tape (P75S/ERL1962) forming the Epoxy Shell $32 \text{ GHz } \sigma_{\text{E}} = 33 \text{ MS/m}$

55 GHz ε = 0.0009

International TOVS Study Conference, 17th, ITSC-17, Monterey, CA, 14-20 April 2010. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2011.