

Development of Algorithm for the Retrieval of Atmospheric Profiles from Infrared Sounder onboard INSAT-3D

<u>Pradeep K Thapliyal</u>

M V Shukla, P C Joshi and P K Pal

Meteorology & Oceanography Group (MOG) Space Applications Centre (SAC) Indian Space Research Organisation (ISRO) Ahmedabad-380015 (INDIA)

pkthapliyal@sac.isro.gov.in

International TOVS Study Conference (ITSC-17), Monterey, CA (USA) 14-20 April 2010

INSAT-3D Satellite/Sensor

INSAT-3D Sounder

Resolution: 10 km

- 3-Axis Stabilized Geostationary Meteorological Satellite (India)
- Location: TBD
- Launch Date: Dec. 2010

INSAT-3D Imager

Channel	Wavelength Band	Resolution
No.		(Km)
1	0.55-0.75 μm	1
2	1.55 - 1.70 μm	1
3	3.7-3.95 μm	4
4	6.5 - 7.1 μm	8
5	10.3 - 11.3 μm	4
6	11.3 - 12.50 μm	4

0 (• 0)	
$\lambda_{c}(\Delta \lambda)$	Principal absorbing
(in µm)	constituents
14.71 (0.281)	CO_2 – band
14.37 (0.268)	CO_2 – band
14.06 (0.256)	CO_2 – band
13.96 (0.298)	CO_2 – band
13.37 (0.286)	CO_2 – band
12.66 (0.481)	water vapor
12.02 (0.723)	water vapor
11.03 (0.608)	window
9.71 (0.235)	ozone
7.43 (0.304)	water vapor
7.02 (0.394)	water vapor
6.51 (0.255)	water vapor
4.57 (0.048)	N_2O
4.52 (0.047)	N_2O
4.45 (0.0456)	CO_2
4.13 (0.0683)	CO_2
3.98 (0.0663)	window
3.74 (0.140)	window
0.695 (0.05)	vis
	κ_c (Dr)(in μ m)14.71 (0.281)14.37 (0.268)14.06 (0.256)13.96 (0.298)13.37 (0.286)12.66 (0.481)12.02 (0.723)11.03 (0.608)9.71 (0.235)7.43 (0.304)7.02 (0.394)6.51 (0.255)4.57 (0.048)4.52 (0.047)4.45 (0.0456)4.13 (0.0683)3.98 (0.0663)3.74 (0.140)0.695 (0.05)

INSAT-3D Sounder Specifications

- System weight: 153 kg
- System Power: < 100 Watts
- IFOV: 280 µrad (E-W) x 280 µrad (N-S) ~10km
- No. of simultaneous sounding per channel: 4
- Field of Regard (FOR): 24° E-W x 21° N-S
- Step size: E-W: 278.9 μrad, N-S: 1115.6 μrad
- Active Scan Coverage: E-W and N-S from ~1° (64 steps) to ~10° (640 steps)
- Signal quantization: 14 Bits/sample
- Downlink datarate: 40K Bits/Sec
- Blackbody calibration: Every 30 minutes or ground command

Objectives

Vertical Profiles of:

- Temperature
- Humidity (Surface 100 hPa)
- Surface Skin Temperature
- Total Ozone

Pressure Levels (40) in hPa : 1000, 950, 920, 850, 750, 700, 670, 620, 570, 500, 475, 430, 400, 350, 300, 250, 200, 150, 135, 115, 100, 85,70,60, 50, 30, 25, 20, 15, 10, 7, 5,

4, 3, 2, 1.5, 1, 0.5, 0.2, 0.1

6400 km x 6400 km scan takes 180 minutes

Observation zenith angle, INSAT-3D at 84E

Characteristics of the atmosphere over GOES vs INSAT-3D Observations

NCEP PWAT Kg/M^2 April

NCEP PWAT Kg/M^2 July

Retrieval Algorithm

Two-step retrieval algorithm of CIMSS/UW

Regression retrieval followed by Physical retrieval (Jun Li et al. 2000)

Different modules include:

- Fast RT model PFAAST (Haal Woolf)
- Sounder Radiance bias correction Linear Regression (Obs vs Sim Tb)
- Cloud detection routine (McMillan & Dean, 1982)
- P_s from forecast and ϵ from SSEC/UW dataset at sounder pixel
- Hybrid First Guess: Linear combination of Regression and Forecast
- Physical retrieval (Jun Li et al. 2000)
- Total Ozone from Separate Regression Routine (Jun Li et al. 2001)
- Retrieval package is ready and installed at SAC
- Improvement in humidity sounding achieved
- Further work under ISRO-SSEC MoU

PFAAST RT Model

PFAAST (Pressure-layer Fast Algorithm for Atmospheric Transmittances)

Improvement in PFAAST by restricting domain upto zenith angle 60°

Regression Retrieval

- Coefficients at different zenith angles (150 classes from 0-65°)
- 3 different latitude zones (0-20, 20-40, 40-60 in N/S)
- Different coefficients for land and ocean (Emissivity difference)
- Spectral emissivity as predictor over land
- Non-linear term (Tb²) and P_s as predictor
- q and ln(q) as predictand for hybrid regression retrieval
- Statistics (independent testing dataset 30N-30S)
 - RMSE TS : 0.64 K, RMSE Total O_3 : 14 Dob,
 - RMSE TPW: REG_LNQ: 0 .71 cm, REG_HYB: 0.56 cm

Physical Retrieval

(Jun Li et al. 2000)

- Cost Function: J(X) = [Y^m Y(X)]^T E⁻¹ [Y^m Y(X)] + (X X₀)^T H (X X₀)
 X₀ is the first guess profile, Y^m radiance measurements, and Y(X) is forward model.
 H is a priori matrix that constrains the solution (e.g. first guess error cov. matrix).
 E is expected radiance error covariance matrix.
- Minimization of the cost function using nonlinear Newtonian iteration yields the following iterative solution:

 $X_{n+1} = X_0 + (K_n^{T} E^{-1} K_n + \gamma_n I)^{-1} \cdot \{K_n^{T} E^{-1} [\delta Y_n^{m} + K_n (X_n - X_0)] + \gamma_n (X_n - X_0)\}$

• Iterative solution in terms of eigenvectors is:

 $f_{n+1} = (\xi_n^T E^{-1} \xi_n + \gamma_n I)^{-1} \{\xi_n^T E^{-1} [\delta Y_n^m + \xi_n f_n] + \gamma_n f_n\}$ where, $\xi = K.V$, and V is eigenvector matrix, and f *is* coefficient vector V contains 5 EOFs for temperature profile, 3 EOFs for humidity profile.

Convergence Test

- Expansion coefficient convergence test:

- $\mathbf{d}_{n+1} = (\mathbf{f}_{n+1} \mathbf{f}_n)^T . (\xi_n^T \mathbf{E}^{-1} \xi_n + \gamma_n \mathbf{I})^{-1} . (\mathbf{f}_{n+1} \mathbf{f}_n)$
- $d_{n+1} \rightarrow 0$ solution converges (i.e., $f_{n+1} \rightarrow f_n$).
- Iteration stops when $(d_{n+1} d_n) < \text{threshold} (\sim 0.1)$.
- If $d_{n+1} > d_n$ then γ_n is increased.
- Brightness temperature residual test:
 - RMS radiance residual is defined as:

 $r_{n+1}^{2} = \sum_{k=1}^{nch} [Y_{k} - y_{k}(x_{n+1})]^{2} / nch$

 If r_{n+1} ≤ r_n the iteration continues until r_{n+1} is acceptably small (less then NEDT)

Sample Result

SUMMARY

- INSAT-3D having 19 channel Sounder is scheduled for launch in Dec 2010
- Retrieval package based on two-step algorithm ready for INSAT-3D
- Accuracies of the retrieved products are comparable to the similar products from other missions (Simulation study).
- Algorithm to be developed for cloud property retrieval/cloudy sky retrievals.
- Further improvements/developments under ISRO-SSEC MoU

Special Thanks to....

- ITWG for financial support to attend ITSC-17
- SEC/UW for providing visiting fellowship (2005-06)
- Allen Huang and Jun Li for providing guidance and support in the retrieval algorithm
- Haal Woolf for the RT Model
- Suzane and E Borbas for the SeeBor dataset and spectral emissivity dataset

International TOVS Study Conference, 17th, ITSC-17, Monterey, CA, 14-20 April 2010. Madison, WI, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, 2011.