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Summary

* The next generation of infrared remote sensing satellite instrumentation,
including climate benchmark missions, will require better absolute Space Traditional 0.12—— _ _ _
measurement accuracy than is now available. T Approach | | | | T Eoem
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 The detection of spectral climate signatures requires measurements of @ ——2o000cm
thermal infrared radiance with uncertainties better than 0.1 K (4=3) 1n R z
radiance temperature. C €« Spectrometer —_—> z

e An On—qrblt Absolqte Radiance Standard (OARS) that can be. useq to meet On-Orbit Absolute Ambient g
these stringent requirements has been demonstrated at the University of Radiance Standard Blackbody o
Wisconsin. (OARS) g 0.04L
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 The OARS facilitates the validation of a remote sensing instrument, with el %
on-orbit traceability to SI standards throughout the lifetime of a mission. g 0.02

* The OARS has been used to validate the radiometric performance of the Absolute QIRLISS VRN AT Gomesy l | l l |
Radiance Interferometer (ARI), the flight prototype of a climate benchmark satellite 240 290 scone Tomperature (K) 320 340
instrument.

e End-to-end radiometric uncertainties better than 0.1 K (A~=3) were demonstrated 1n Predicted on-orbit radiometric performance: infrared
both the laboratory and vacuum environment across the broad range of Earth scene sensor calibration uncertainty (dotted), OARS uncertainty
temperatures from space. (dashed), combined uncertainty (solid).

* Thus the OARS can be used to improve the accuracy of the next generation satellite
infrared remote sensors and to attain benchmark climate measurements from space.
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The Unmiversity of Wisconsin has developed the On-orbit Absolute Radiance Standard
. . . Outer enclosure Phase change cells Temperature
(OARS), a blackbody with integrated phase change cells for on-orbit temperature (Ga, H,0, Hg) controlled shroud
determination, and a built in Heated Halo for on-orbit emissivity determination, as part N
. o . onauctive
of the Absolute Radiance Interferometer (ARI) laboratory climate benchmark satellite Bridge
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prototype. This development has been supported by the NASA Instrument Incubator
Program (IIP) and the Earth Science Technology Office (ESTO). . -
The blackbody design 1s based on the on-board calibration system developed for
the NASA Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS). A
temperature controlled light-trapping blackbody cavity contains ultra-stable thermistor | ]
temperature sensors and miniature phase change cells containing small amounts (<1 g) Thermal Thermistors  Temperature v '
: . isolator contolled cavity Heated halo
of high-purity reference __
matenials that provide : Scene Select Module OARS schematic cross section
on-orbit temperature
. . Calibration References
Cahbratlon' The heatable Heated Halo Ambient and Hot Blackbody for IIP
conical frustum (Heated Sl Tty
Halo) thermally isolated in
front of the cavity provides ARIT front-end
a broadband source for
periodic measurement of
cavity emissivity.
OARS components before assembly
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A temperature calibration point 1s obtained by measuring the transient cavity temperature
: : : ) 29.860 Blackbody
response to a small increase in power. The sequence of events during a typical melt of & _Heater Cavity
gallium 1s 1llustrated at right. After initial stabilization in the constant temperature mode, 29.840
. .. Blackbody
a constant power 1s used to transition through the melt plateau, where the phase change 29 820 Cavity
signature 1s observed. No melt
29.800 |Thermistor material
9_ present N
S 29.780 -
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Various melt materials have been demonstrated, including H O, Hg, and a Ga-In eutectic. S 20760 [ o T e e >
Because the melt durations are thousands of seconds, there are very low cavity thermal S — . - Melt Material
] ] . . ~ 29.740 Melt Signature” - when Ga melt material is
gradients (1 to 2 mK) during a melt. Thus the melt signature can be used to calibrate all present, the added power goes into changing - = B
. . . 29 720 the phase to liquid - no cavity temperature rise. ) ‘
the thermistors 1n the cavity. Qk
Cavity held at n
Using this technique, the thermistors embedded 1n the cavity can be calibrated to temperature Applied ——
uncertainties of better than 5 mK (4=3). With the inclusion of all systematic error sources,
the combined uncertainty of the OARS blackbody effective temperature is 45 mK (£=3). Typical gallium melt sequence Miniature phase change cells fit in the
footprint of a thermistor
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The Heated Halo 1s a broadband thermal radiation source that 1s placed between the blackbody OARS Emici
. . . . MmISSIvity OARS/AERI Blackbody Emissivity Comparison
and the spectrometer performing the measurement, outside the direct optical path of the | . . .
detector field-of-view. By elevating the Heated Halo temperature above the blackbody 1000y 1
temperature, the combined emitted and reflected radiation from the blackbody 1s measured 0.999]
with the spectrometer. Knowledge of the instrument temperatures and viewing geometry
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allows the spectral blackbody emissivity to be determined. _ 0.999 3
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Using the ARI spectrometer, the emissivity of the OARS blackbody cavity was measured with - —— Halo Gen. 2
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The measurement 1s repeatable and robust, and has been validated using several independent 0.994 . o NIST-TXR
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the right. The combined uncertainty S 0.0006 \ =
1s less than 0.0006 for the majority > \&
of the measured spectrum. Research £ 00004 N\
1s currently ongoing to improve the \\ \\
emissivity, and lower the measurement 0.0002 \‘\\\\
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