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= JASI (Infrared Atmospheric Sounding Interferometer) Level 2 Measurements

- used for the simulation of SEVIRI Tb

- Temperature and humidity profiles from Jan. to Dec. in 2012 between 35N-75N latitude and
75W-75E longitude

= SEVIRI (Spinning Enhanced Visible and InfraRed Imager) 2.5min rapid scan data
- used for the characterization and validation of the ANN model

Retrieved CAPE on 10.8 TB image (2013.06.20 20:02:13)
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Radiative Transfer Model
= MODTRAN (MODerate resolution TRANsmission) v. 5.2.2 = Significant features
- used for the simulation of the upwelling radiances at TOA - During the afternoon hours (at around 13:02 UTC) several convective clouds begin to pop
- Simulated radiances are band-averaged over SEVIRI spectral response function (SRF) up over the regions where the CAPE values are relatively high (marked with arrows and
Artificial Neural Network (ANN) circles at 09:02 UTC image) and developed to the severe convective clouds (at 15:02 UTC)
= Multi-Layer Perceptron feedforward backpropagation Algorithm - High CAPE values around the leading edges of clouds induce a further development, while
- used to find the relation between the simulated Tb and CAPE and to retrieve CAPE directly Weakgr CAPE \(alues around th? trailing edges res.ult n Weakengd convective activities.
from the measured Tb Significance will be assessed with more case studies and quantitative validation.

- No significant convection occurs over high CAPE areas in the morning images (at around
11:02 UTC marked with dashed blue arrows) which requires further investigation
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- Apply the model to more special observation data and compare with CAPE values from
the radiosonde for the quantitative validation
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- network weights are updated in the direction in which the error (difference between the
desired output and the actual output) decreases most rapidly

- For every iteration (epoch), the network fitness is evaluated by root mean square error (RMSE)




