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1. Introduction1. Introduction  
One of the important strategies of improving the operational implementation of 

4DVar is to develop an ensemble-based 4DVar (En4DVar), which uses an ensem-

ble method similar to the one used in the ensemble Kalman filter (EnKF) for ob-

taining a solution for the minimization of 4DVar. The dimension-reduced projec-

tion 4DVar (DRP-4DVar) proposed by Wang et al. (2010) is one representative ap-

proach of the En4DVar family.  

 

The DRP-4DVar solves the 4DVar problem in the subspace defined by an ensem-

ble. This approach conserves the advantages of the 4DVar while avoiding the use 

of the adjoint model. Thus, DRP-4DVar is a much more computationally economi-

cal way to implement 4DVar. Besides, similar to the EnKF, DRP-4DVar uses real-

time ensemble to estimate the background error covariance outside the assimila-

tion window, which ensures its global flow-dependence. Plenty of studies on DRP-

4DVar have shown good performance both with simple models like Lorenz96 and 

realistic models like MM5, WRF, AREM etc. 

 

However, DRP-4DVar has a potential problem. The DRP-4DVar replaces the tan-

gent linear model of 4DVar with a linear statistic relation to forecast perturbations 

( see 2. Method). In this way, DRP-4DVar avoids the use of adjoint model and its 

cost function is simplified as an explicit quadratic polynomial. As a result, the per-

formance of DRP-4DVar may be limited by the linear approximation. This work 

focuses on this potential problem. We verify the problem by Lorenz96 model 

and present an iterative nonlinear correction process to alleviate the problem. 

2. Method2. Method  

i) DRP-4DVar 

For 4DVar, its cost function can be written as follow: 

 
where N is the total number of observation times within the assimilation window, 

[t1 , t2, …, tN] are the times of observations.  

In DRP-4DVar, we have an ensemble of initial condition perturbations Px 

(perturbations based on xb). If we assume the analysis increment can be expressed 

as a linear combination of the ensemble members (i.e. δx0
a=Pxα ), we have the cost 

function transformed as a function of α: 

      
where   and  denote the observation increment and 

the simulated observation increment respectively. 

A linear approximation could be made in the vicinity of  from Taylor expansion: 

 

where PY is the ensemble of the simulated observation increments corresponding 

to Px. Thus, the model term Y’(Pxα) is replaced with the linear statistic relation 

PYα  and the cost function is simplified as a quadratic polynomial: 

 

Like EnKF, B can be estimated by the ensemble,           

If        (which is the case in the following experiments),  

As the cost function of DRP-4DVar is explicit and quadratic, and usually the di-

mension of the ensemble is very small (~100) unless being localized, we can simp-

ly solve the linear equations  J =0  and get the analysis xa=xb+Pxα
* 

 

ii) DRP-4DVar with Nonlinear Correction 

As shown in last subsection, a linear approximation is made. The approximation 

simplifies the solution very effectively, however it may cause our analysis subopti-

mal, especially when the observation operator or the model has strong nonlinearity 

or the analysis increment is no longer small. To alleviate this problem, we adopt 

the concept of  “inner loop/outer loop” from the incremental approach (Courtier et 

al. 1994) and extends the DRP-4DVar with a nonlinear correction process, forming 

the  NC-DRP-4DVar. In this extension, the original DRP-4DVar, which is solved 

directly and easily but with linear approximation, is treated as a special inner loop. 

In the outer loop, the background and the ensemble are updated by the nonlinear 

model to refine the results from the inner loop iteratively. 

 

 

 

 

 

 

 

 

 

 

From Fig.1, we can see the two points of NC-DRP-4DVar: 

a.The original DRP-4DVar is a special case of NC-DRP-4DVar with one outer 

loop; 

b.The strategy to update ensemble Py is undetermined. Two strategies are tested 

here: 

   1> No Updating strategy: γ(Py)=Py,  no actual updating is performed, so it’s 

economical but empirical 

   2> Re-Integrating strategy: update Py  by re-integrate Px , it’s theoretical correct 

but very time-consuming ! 
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Fig1. schematic diagram 

of NC-DRP-4DVar 

3. Experiments basic settings3. Experiments basic settings  

● observing system simulation experiment (OSSE)  

 

● Lorenz96 model 

(j=1,2,..,M)  M=40;  F=8.0;   

     Fourth-order Runge-Kutta scheme; dt=0.05 (~6h) 

 

● Assimilation window:  4 steps (~24h), i.e. t=0,1,2,3 

 

● observations: perturbed the truth with uncorrelated Gaussian noises  

   (variance=0.16); available at all grids in t=0/3 (begin /end of the window) 

    

● Ensemble number: ns=100 (the ensemble number is enough so as to isolate the 

error caused by linear approximation from the sampling error and truncation er-

ror in the dimension-reduction projection) 

 

● No localization (as the ensemble number is sufficient to estimate B correctly) 
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4. Experiments 4. Experiments ——  CTRLXBCTRLXB  

Design: a set of 30-window assimilation experiments; background is  from a control run 

(starts with the initial background and integrates freely for 30 windows), so assimilations 

among different windows are independent;  B of 4DVar is an identity matrix multiplies an in-

flator: B=λI ;  Px of  DRP-4DVar related schemes is randomly generated with Gaussian dis-

tribution (with zero mean and covariance as I), independently among all windows; Bα of 

DRP-4DVar related schemes is also inflated by λ; λ is from ‘perfect’ inflation: λ=RMSE(xb), 

so the B or PxBαPx
T can approximate the variance of  xb. To further reduce computational 

cost, an EOF decomposition is performed on Py before assimilation and the number of EOF 

modes selected is set to 40.  

 

Purpose:  in this design, Px is generated independently and PxBαPx
T is approximately the 

same with 4DVar’s fixed B, so no global flow-dependence can be shown for DRP-4DVar and 

DRP-4DVar can not be better than 4DVar. 4DVar is a reference to show how DRP-4DVar is 

affected by the linear approximation and how NC-DRP-4DVar schemes can improve its per-

formance. 

 

Results: 

 

 

 

 

 

 

 

 

 

Points: 

1.Compared with 4DVar, DRP-4DVar’s analysis RMSE is much larger and it increases with 

the increase of xb RMSE(see Fig.2(b)). This can be attributed to the linearity approxima-

tion in its solution. If the background is inadequately provided, the analysis increments δxa 

tend to be larger in magnitude so the effect of nonlinearity tends to be more significant and 

poor performances are more likely to emerge  

2.Both the two NCDRP schemes reduce the RMSE significantly. Especially for the 

NCDRP-RI, its RMSE almost achieves the same level with that of the 4DVar, also suggest-

ing the correctness of our theorem.  

3.Considering the computational cost: given Px/Py/xb/yb, DRP-4DVar need no model runs, 

NCDRP-NU nees 4 model runs (each outer loop needs one model run), NCDRP-RI needs 

about 4*40 model runs (each outer loop needs update the whole ensemble), 4DVar needs 

about 30~50 tangent linear model runs & ajoint model runs in its inner loops and 4 nonline-

ar model runs in its outer loops. 

 

A mixture between ‘No Updating’ & ‘Re-Integrating’  

To further improve the performance of NCDRP-NU and reduce the computational cost of 

NCDRP-RI, a mixed strategy is proposed, i.e., use ‘Re-Integrating’ strategy in the first X 

outer loops while use ‘No Updating’ in the rest outer loops, namely ‘NCDRP-RIX’. 

Fig.2   RMSE of  

4DVar (black, only in (a)); 

DRP-4DVar(blue); 

NC-DRP-NU(red); 

NC-DRP-RI (pink); 

Xb (green, only in (a)). 

(a)in time-series view 

(b)Scatter of (xb_rmse, xa_rmse) 

(a) (b) 

●  Assimilation Schemes 

   4DVar (incremental approach + adjoint model;  inner loop: conjugate gradient method, 

terminate: || J || reduces more than 90% , max iterations =12; outer loop iterations =5 

   DRP-4DVar (directly solve  J =0  ) 

   NCDRP-NU( NCDRP-4DVar with 5 outer loop iterations, use ‘No-Updating’ strategy) 

   NCDRP-RI( NCDRP-4DVar with 5 outer loop iterations, use ‘Re-Integrating’ strategy) 

  

●  2 sets of experiments, both with 30-window  

   CTRLXB: xb using a control run 

   CYCLEDA: cycling assimilation  

Fig.3   RMSE of  

NCDRP-NU(red); 

NCDRP-RI1(orange); 

NCDRP-RI2(yellow); 

NCDRP-RI3(purple); 

NC-DRP-RI (pink); 

 

As in Fig. 3, NCDRP-RI1 gets a similar 

performance with NCDRP-RI while it 

only updates the ensemble once and re-

duces 75% of the computation of 

NCDRP-RI.  

5. Experiments 5. Experiments ——  CYCLEDACYCLEDA  

Unlike CTRLXB,  CYCLEDA uses real-time updated background and ensemble, so the ad-

vantages of the DRP-4DVar related schemes, i.e. the global flow-dependent covariance, 

could be shown.  As a comparison, 4DVar is also conducted, with the fixed B is the time av-

erage of ensemble-based covariances of DRP-4DVar, multiplied with a tuned inflator.  As the 

background is of good quality in the cycling experiments, the nonlinear effects are small, on-

ly the ‘No Updating’ strategy is applied.   

DRP-4DVar has a better performance 

over 4DVar under different settings.  This 

can be attributed as the effect of global 

flow-dependence of ensemble methods. 

In spite of the good performance of DRP-

4DVar, the nonlinear correction process 

can further reduce the RMSE and shorten 

the spin-up time (figure not shown) . 

time-mean RMSE 4DVar DRP-4DVar NCDRP-NU 

Basic settings 0.21 0.12 0.11 

Nonlinear obs.  

y=x2 

0.08 0.05 0.02 

Long window 

8 steps (48h) 

0.2 0.15 0.13 

6. Summary6. Summary  

In this study, we prove that the DRP-4DVar is limited by its linear approximation and there-

fore we extend it with a nonlinear correction process, forming the NCDRP-4DVar. In the im-

plementation of the NCDRP-4DVar, two strategies to update the ensemble are introduced: 

the economical but empirical ’No-Updating’ strategy and the theoretically correct but time 

consuming “Re-Integrating” strategy. The latter needs to integrate all members of the ensem-

ble for each outer loop iteration, while the former needs no extra computation. 

 

We use the Lorenz96 model to test our methods. Two kinds of OSSE experiments are carried 

out, CTRLXB and CYCLEDA. In CTRLXB both two strategies for NCDRP-4DVar show 

significant improvements due to the correction of nonlinear effect, especially for the ‘Re-

Integrating’ strategy, its RMSE is almost the same with that of 4DVar, which proves our the-

orem correctness. To reduce the computational cost of ‘Re-Integrating’ strategy, we suggest a 

mixed strategy ‘RIX’, in which ‘Re-Integrating’ strategy is only used in first X outer loops 

while ’No-Updating’ is used in the rest. Perfect performance is shown with strategy ‘RI1’, 

which costs only 25% computations of that of NCDRP-RI. In CYCLEDA, which is also the 

operational case, the ensemble integrates so that the global flow-dependence of DRP-4DVar 

is retained. As the result, DRP-4DVar outperforms 4DVar under all the different settings. 

NCDRP-4DVar also has a stable improvement over DRP-4DVar. 
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