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(1) Can the DA system represent localised features?

•Most modern DA systems determine the analysis increments

xa = Xa −Xb

via a costfunction

J(x) =
1

2

{
xTB−1x + [y −Hx]T R−1 [y −Hx]

}
(1)

•Many observations (particularly satellite radiances) are strongly
nonlocal

•DA systems have to deal with strongly localised features like
cloud tops, inversions, etc.

functions

sensitivity

Question: Can the costfunction minimum describe such localised features?

Assume: Observations are locally very dense

(as true for IR radiances from hyperspectral sounders)

(2) If observation errors were negligible:

The Pseudo-Inverse Solution (PI)

General solution for the cost function minimum xa (of Eq.(1)):

xa =
[
B−1 +HTR−1H

]−1
HTR−1y (2)

For vanishing obs errors (R → 0) this yields the Pseudo Inverse (PI)

(assume for the moment that
[
HBHT

]−1
exists)

x̌a = BHT
[
HBHT

]−1
y (3)

with

Hi x̌a = yi .

The PI

• is consistent with all observations y = {y1,y2, ..,yp}

• describes localised features as detailed as the density of observations allows

• potentially amplifies noise

(3) Finite observation errors degrade

representation of localised feature

The general solution (2) for the costfunction minimum can be

written as

xa =

∑
τ Gτ x̌

a
τ∑

τ Gτ
(4)

with x̌a
τ : PI corresponding to observation subset

τ = {τ1, τ2, .., τk} ⊂ {1, 2, .., p}

∑

τ

: sum over all observation subsets τ

The weights Gτ =
det

(
HτBHT

τ

)

∏
j∈τ rj

• are larger the smaller the observation errors rj

• are smaller the more the observation operators Hτ overlap

• (Gτ x̌
a
τ) reduces to zero if

(
HτBHT

τ

)−1
does not exist.

(4) Example: A simple model problem

X_1

X_2

• 2 degrees of freedom

• 2 observations

(
y1

y2

)
=

(
h1 0
h0 h2

) (
x1

x2

)

= H x

B =

(
b1 b0
b0 b2

)
, R =

(
r1 0
0 r2

)

xa =
G{1}x̌

a
{1}+G{2}x̌

a
{2}+G{1,2}x̌

a
{1,2}

1+G{1}+G{2}+G{1,2}

G{i} = B̂ii

ri
G{1,2} = B̂11

r1
B̂22

r2

det(B)h2

2

(b1h0+b0h2)
2+det(B)

B̂ = HBHT

The PI related to both observations (τ = {1, 2})
yields an exact reconstruction (assuming obs errors
are sufficiently small)

x̌a
{1,2} = y1

h1

(
1

−h0

h2

)
+ y2

h2

(
0
1

)

Single observation PIs, on the other hand, smear
out the signal from one observation to both levels by
distributing it statistically according to H and B.

x̌a
{1} = y1

h1

(
1
b0
b1

)
; x̌a

{2} = y2

B̂22

{
h0

(
b1
b0

)
+ h2

(
b0
b2

)}

The weighting factors G{i} and G{1,2} act as a filter.
The 2 obs PI x̌a

{1,2} amplifies noise particularly
when det (B) or h2 are very small. One has, e.g.,

(
G{1,2}x̌

a
{1,2}

)
→ h2

as h2 → 0

(5) Summary and conclusions

The main mathematical result

•A novel way of writing the costfunction minimum
xa has been presented - see Eq.(4).

•This expands xa in a sum over Pseudo Inverses
(PI)s (see Eq.(3)), each corresponding to a different
subset τ of the available observations
(τ : index set with τ = {τ1, τ2, .., τk} ⊂ {1, 2, .., p},
where p is the total number of observations).

The role of the Pseudo Inverse (PI)

•The PI for a given subset τ leads to an analysis
state which is completely consistent with all the ob-
servations from τ . It can therefore be regarded as
a direct transformation of the observations
τ into model space.

•However: the PI is generally not optimal:

–The PI neglects observation error

–The PI tends to amplify noise

The expansion of xa in terms of PIs (see Eq. (4))

•The coefficients Gτ in the expansion (4)
show to which extent different observa-
tion sets τ contribute to the analysis in-
crements xa. There are two limiting cases

1. Obs errors are very small:

– dominant are PIs x̌a
τ of the

largest observation sets τ for which[
HτB (Hτ)

T
]−1

exists.

– the spatial accuracy is the maximally
achievable accuracy given the observa-
tion density.

2. Obs errors are very large:

– dominant are single obs PIs x̌a
{k}

– they smear out signals from individual
observations

•The coefficients Gτ filter the noise.

–Gτ is very small if observation errors ex-

ceed the required precision.

Gτ =
det

(
B̃τ

)

∏
i∈τ Ri

B̃τ : background correlation matrix
in obs space.

det
(
B̃τ

)
gives a measure for the

overlap of obs-operators

Ri = ri/
{
HτB (Hτ)

T
}
ii

(obs-/background error)
Normalised obs error

Conclusions

•The expansion of xa in terms of PIs shows
to which extent measured degrees of freedom
(which are non-local!) are exploited for re-
constructing spatial features.

•Large obs errors

⇒ degrade spatial resolution
(not only decrease weight of obs
in assimilation process)

Reconstruction of localized features

• requires small obs errors.

•Obs errors have to be smaller the more

– observation operators overlap.

– observations contradict statistical expecta-
tions from B matrix.
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