# The Use of Satellite Radiances in the ERA5 Reanalysis



Climate Change

## Bill Bell,

Paul Berrisford, Gionata Biavati, Per Dahlgren, Dick Dee, Rossana Dragani, Manuel Fuentes, Hans Hersbach, Andras Horanyi, Joaquín Muñoz-Sabater, Carole Peubey, Raluca Radu, Iryna Rozum, Dinand Schepers, Adrian Simmons, Cornel Soci, Jean-Noël Thépaut and Sebastien Villaume.

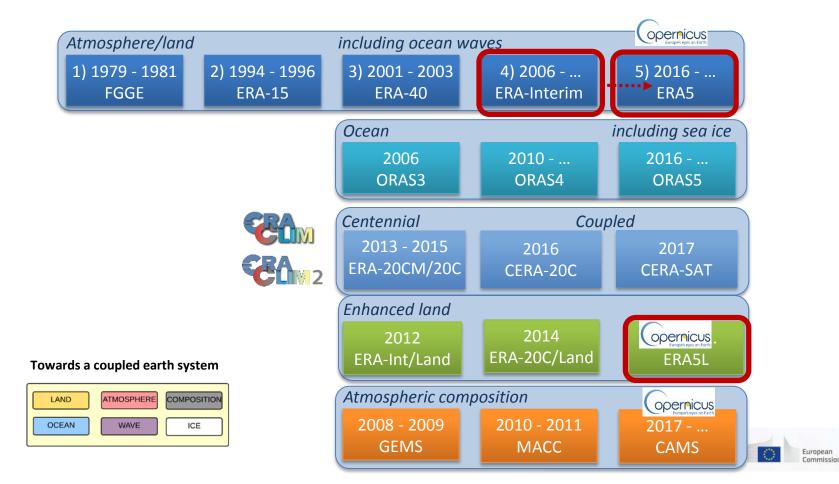
European Centre for Medium-Range Weather Forecasts










- Background the ERA5 Reanalysis
- Radiance Assimilation in ERA5
  - Reprocessed datasets (e.g. CMSAF SSMI)
  - Improved forward modelling (e.g. time varying CO<sub>2</sub>)
  - Early-era sounding data (VTPR, 1972-79)
- Concluding remarks







# Reanalyses Produced at ECMWF





# What's new in ERA5?

|                                     | ERA-Interim                                                    | ERA5                                                                                                                        |
|-------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Period                              | 1979 – present                                                 | Initially 1979 – present, later addition 1950-1978                                                                          |
| Streams                             | 1979-1989, 1989-present                                        | Parallel streams, one/two per decade                                                                                        |
| Assimilation system                 | 2006, 4D-Var                                                   | 2016 ECMWF model cycle (41r2), 4D-Var                                                                                       |
| Model input (radiation and surface) | As in operations,<br>(inconsistent sea surface<br>temperature) | Appropriate for climate, e.g.,<br>Evolution of greenhouse gases, volcanic eruptions, sea<br>surface temperature and sea ice |
| Spatial resolution                  | 79 km globally<br>60 levels to 10 Pa                           | 31 km globally<br>137 levels to 1 Pa                                                                                        |
| Uncertainty estimate                |                                                                | Based on a 10-member 4D-Var ensemble at 62 km                                                                               |
| Land Component                      | 79km                                                           | ERA5L, 9km (separate, forced by ERA5)                                                                                       |
| Output frequency                    | 6-hourly Analysis fields                                       | Hourly (three-hourly for the ensemble), Extended list of parameters ~ 9 Peta Byte (1950 - timely updates)                   |
| Extra Observations                  | Mostly ERA-40, GTS                                             | Various reprocessed CDRs, latest instruments                                                                                |
| Variational Bias correction         | Satellite radiances, radiosondes predetermined                 | Also ozone, aircraft, surface pressure, newly predetermined for radiosondes.                                                |





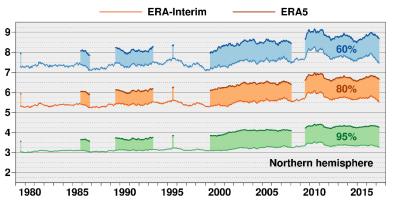


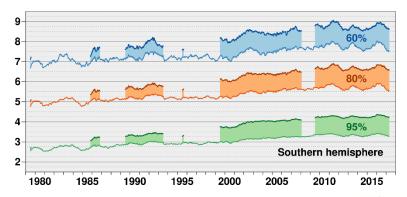


## ERA5 - status

#### As part of C3S, the production of ERA5 is well underway:

- Higher resolution, hourly output, uncertainty estimate.
- Produced in parallel streams
- Public Release 2010-2016 end June 2017
- Release other stream to be done in stages within Climate Data Store from 2018.


### The performance of ERA5 is very promising in the troposphere.


- improved global hydrological and mass balance
- reduced biases in precipitation,
- refinement of the variability and trends of surface air temperature.

#### There are some imperfections, though

- Stratospheric temperature biases
- Initially there were quality issues over the southern hemisphere in the 1980s (delay in production stream)

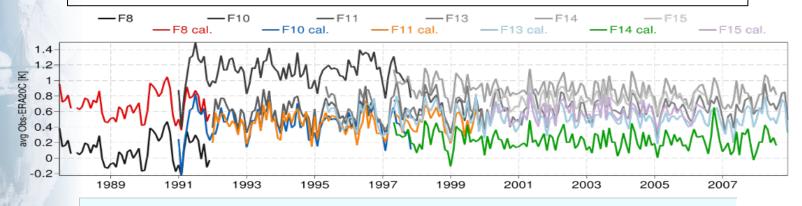
#### Range (days) when 365-day mean 500hPa height AC (%) falls below threshold














## Reprocessed radiances: CM-SAF SSM/I

- ✓ SSM/I data covering the 1987-2009 period reprocessed by CM-SAF: better calibration, recovery of extra-data, & better knowledge of instrument characteristics
- ✓ Prior to assimilation in ERA5, the data have been compared to off-line RTTOV simulations using interpolated fields from ERA-Interim and ERA-20C.

Mean departure SSM/I-ERA20C in Ch4 (37H), Ocean, ice-free and non-rainy scenes, with/without intercalibration offsets



Differences between grey and colour curves show impact of application of CM-SAF brightness temperature inter-calibration offset



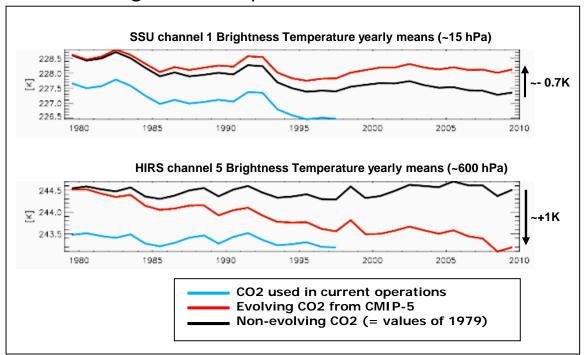






# ERA5 - Improvements in forward model

|                                             | ERA-Interim                                     | ERA5                                                                       |
|---------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| Radiative transfer model                    | RTTOV-7                                         | RTTOV-11                                                                   |
| CO2 (for IR radiances SSU and HIRS)         | Fixed                                           | <b>Evolving CO2</b> (CMIP5 trends + MACC lat-press variations              |
| Rainy SSM/I<br>Radiances(Microwave Imagers) | 1D+4D VAR                                       | 4DVAR                                                                      |
| All-sky Assimilation                        | Clear-Sky Assimilation except<br>1D+4DVar SSM/I | All-sky for: all microwave imaging and WV sounding channels                |
| Response-functions:                         |                                                 |                                                                            |
| - SSU cell pressure                         | Fixed cell-pressure                             | cell-pressures corrected (Saunders et al. 2013)                            |
| - HIRS                                      | - Standard                                      | Shifted spectral response functions for NOAA-11 and -14 (Chen et al. 2013) |
| - Other satellites                          | As in operational 31r2                          | As in operational 41r2                                                     |



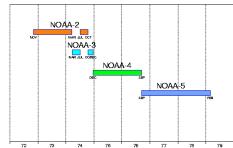


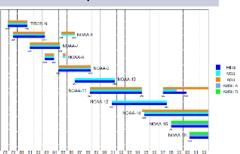



# ERA5 - Accounting for changing CO2

## Simulated brightness temperatures








# Vertical Temperature Profiling Radiometer

|                       | VTPR (McMillin et al. 1973)                  | HIRS/2 (Schwalb 1978)                                |
|-----------------------|----------------------------------------------|------------------------------------------------------|
| Inclination           | 101.7° (sun-synchronous)                     | 98.9° (sun-synchronous)                              |
| Satellite altitude    | 1,464 (1,510) km                             | 870 (833) km                                         |
| Horizontal resolution | (nadir) 55 x 57 km<br>(scan edge) 67 x 91 km | (nadir) 17.4 x 17.4 km<br>(scan edge) 29.9 x 58.5 km |
| Scan angle            | ±30.3°                                       | ±49.5°                                               |
| Swath                 | 1,876 km                                     | 2,240 km                                             |
| #FOV                  | 23                                           | 56                                                   |
| #Instrument           | Two / satellite                              | One / satellite                                      |





Shinya Kobayashi







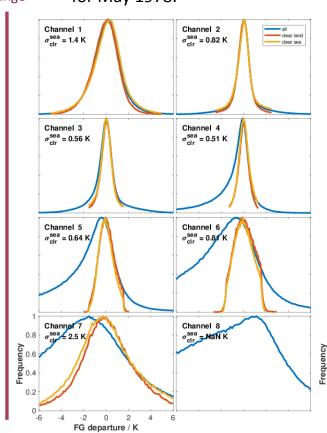
# VTPR Channel specifications

# NOAA 2/VTPR Set 1

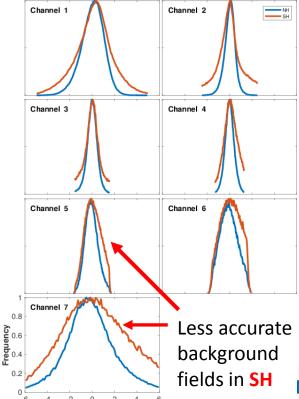
| Ch | Center<br>wavenumber<br>(cm <sup>-1</sup> ) | Absorption band      | Half-<br>width<br>(cm <sup>-1</sup> ) |
|----|---------------------------------------------|----------------------|---------------------------------------|
| 1  | 667.50                                      | 15μ CO <sub>2</sub>  | 3.6                                   |
| 2  | 677.40                                      | 15μ CO <sub>2</sub>  | 11.1                                  |
| 3  | 694.95                                      | 15μ CO <sub>2</sub>  | 12.4                                  |
| 4  | 708.25                                      | 15μ CO <sub>2</sub>  | 10.7                                  |
|    |                                             |                      |                                       |
| 5  | 725.35                                      | 15μ CO <sub>2</sub>  | 11.4                                  |
| 6  | 747.40                                      | 15μ CO <sub>2</sub>  | 12.0                                  |
| 8  | 835.75                                      | Window               | 7.1                                   |
|    |                                             |                      |                                       |
|    |                                             |                      |                                       |
|    |                                             |                      |                                       |
| 7  | 533.65                                      | 18μ H <sub>2</sub> O | 15.3                                  |

McMillin et al. (1973)

## Kidwell (ed) (1998)


# NOAA 6/HIRS/2

| Ch | Center<br>wavenumber<br>(cm <sup>-1</sup> ) | Absorption band      | Half-width<br>(cm <sup>-1</sup> ) |
|----|---------------------------------------------|----------------------|-----------------------------------|
| 1  | 668.02                                      | 15μ CO <sub>2</sub>  | 3                                 |
| 2  | 679.94                                      | 15μ CO <sub>2</sub>  | 10                                |
| 3  | 690.44                                      | 15μ CO <sub>2</sub>  | 12                                |
| 4  | 704.69                                      | 15μ CO <sub>2</sub>  | 16                                |
| 5  | 717.43                                      | 15μ CO <sub>2</sub>  | 16                                |
| 6  | 732.47                                      | 15μ CO <sub>2</sub>  | 16                                |
| 7  | 748.48                                      | 15μ CO <sub>2</sub>  | 16                                |
| 8  | 900.64                                      | Window               | 35                                |
| 9  | 1029.48                                     | O <sub>3</sub>       | 25                                |
| 10 | 1217.77                                     | 6.3H <sub>2</sub> O  | 60                                |
| 11 | 1368.05                                     | 6.3H <sub>2</sub> O  | 40                                |
| 12 | 1485.76                                     | 6.3H <sub>2</sub> O  | 80                                |
| 13 | 2190.60                                     | 4.3μ CO <sub>2</sub> | 23                                |
| 14 | 2210.09                                     | 4.3μ CO <sub>2</sub> | 23                                |
| 15 | 2237.76                                     | 4.3μ CO <sub>2</sub> | 23                                |
| 16 | 2269.43                                     | 4.3μ CO <sub>2</sub> | 23                                |
| 17 | 2360.42                                     | 4.3μ CO <sub>2</sub> | 23                                |
| 18 | 2514.97                                     | Window               | 35                                |
| 19 | 2654.58                                     | Window               | 100                               |
| 20 | 14453.14                                    | Visible              | 1000                              |




# Preparation for assimilating VTPR in ERA5

VTPR first guess departures for May 1978.



VTPR first guess departures For NH and SH.



FG departure / K



- Builds on experience gained in ERA-40 and JRA-55
- VarBC (4 thicknesses, constant,
   3 scan angle predictors)
- Cloud detection based on HIRS scheme at ECMWF (Krzeminski, 2009)
- Remaining challenges: channel selection, R tuning, B for 1972-1979
- Expect 1970s stream(s) to start mid-2018.







# Concluding remarks

- The ERA5 reanalysis is currently in production (1979-present) performance is significantly improved wrt ERA-Interim.
- ERA5 uses a 2016 ECMWF model cycle (41R2) & benefits from a range of upgrades in the use of satellite data implemented over the last 10 years.
- Early streams (1950 1979) are due to start in 2018, and complete by end-2018. They present some challenges, e.g.: optimisation of **B**, and optimising the use of early radiance datasets (e.g. VTPR).
- ERA5 benefits from a number of reprocessed satellite datasets (e.g. CM-SAF SSMI) and other innovations in forward models, as will future reanalyses.





