
Quicklook Images
CSPP Geo software packages include the optional capability to create quicklook images.

CSPP Geo Direct Broadcast Software for GOES-16 and 
Himawari-8: Project Overview and Lessons Learned
Graeme Martin, Liam Gumley, Nick Bearson, Jessica Braun, Geoff Cureton, Alan De Smet, 
Ray Garcia, Tommy Jasmin, Scott Mindock, Eva Schiffer, Kathy Strabala
Space Science and Engineering Center, University of Wisconsin - Madison

Graeme Martin: graemem@ssec.wisc.edu

1. Python is fine for real-time processing
Python has long been used in a “glue” role in direct broadcast software developed at SSEC. More 
recently we have started developing core components in Python. We are well aware of the advantages 
of Python (rapid software development, availability of a broad spectrum of community-supported 
software modules for scientific programming), but initially there were questions about the suitability of 
Python for core processing in a real-time or operational-type environment. In practice, we have found 
robustness to be equivalent to that of a compiled language, and performance to be adequate as long as 

best practices are followed. Once core functionality has been demonstrated, optimizations can be made if needed by selectively re-writing 
computationally intensive routines in a compiled language like C.

2. Re-use existing software where possible
The CSPP team has had good success in building packages encapsulating pre-existing 
software, often with few to no modifications for direct broadcast use. This strategy is 
particularly effective for Level 2 products, because it keeps science domain experts in 
charge of algorithms, and allows the CSPP team to focus on glue code development 
and computer science considerations. It also reduces costs compared to waterfall-style 
development, by avoiding software re-writes and simplifying verification and debugging. 
For this to be an option, the third-party software must be sufficiently mature (i.e. fully 
validated), reliable and robust. Any necessary improvements and bug fixes to the core 
algorithm code can be passed upstream to the original developers.

3. Put some thought into software versioning
Though it may seem minor, having an explicit software versioning scheme that is well thought-out can help to avoid a lot of confusion 
among a development team and among users. The versioning scheme should specify the meanings of each component of a version 
number and the rules for when they are incremented, for example based on interface changes, added functionality and bug fixes. Software 
version numbers should appear consistently throughout software, documentation and products. We have found it to be useful to have the 
freedom to increment the patch number (lowest order component) freely as new packages are created for internal testing purposes, so 
there is no ambiguity about what version of the software is being run at any time.

4. Use version control software, heavily
Version control systems have become a critical tool for any software development project. The provide an 
audit trail of what changes were made to code, when they were made and by whom. They allow recovery of 
old versions of code, encourage experimentation and are particularly useful in collaborative development 
situations. Modern version control systems like git are practically idiot-proof. Practically. The CSPP Geo team 
uses gitlab, which provides a browser-based interface on top of git that allows branching and merging, 
viewing of source files from different branches and commits, file comparisons, issue tracking, continuous 
integration automation hooks, and wiki functionality.
 

5. Issue tracking + ticket reviews + code freezes
Modern issue tracking systems allow developers and support staff to track issues reported by customers, as 
well as coding and testing tasks associated with individual software releases. Tasks can be assigned to team 
members, given priorities and associated with milestones such as future software releases. Team member 
can see what tasks remain and who they are assigned to, improving the overall level of coordination. The 
CSPP Geo team typically reviews and prioritizes tickets and sets a “code freeze” date at the beginning of a 
development cycle.

6. Allocate time and resources for testing and documentation
A significant amount of time and effort are needed to ensure that software is working properly before release, and to create user documentation. The 
testing should include all command line and configuration options, new functionality and bug fixes, and automated regression testing to ensure old 
problems have not reappeared. Thorough pre-release testing often flushes bugs that are not apparent to the developer, avoiding the need for later bug-
fix software releases and ultimately benefitting users.

7. Make sure you own at least one machine that matches each hardware specification
CSPP Geo software is tested on a variety of machines before release, including a reference machine that exactly matches the published hardware 
specification for that software package. Testing on a reference machine gives confidence that a software build performs as expected, and will also do 
so on a user’s machine. Having a dedicated “model” test machine under our control allows us to test new builds as they are created, and to run 
uninterrupted and exclusively for long periods of time to evaluate stability. We also make use of a number of “burn-in” testers and experimental/build 
facility machines.

8. Use collaboration tools
The CSPP Geo team relies heavily on Slack, which is basically a freemium group chat application with some 
enhancements tailored to software developers. Slack users can define channels dedicated to specific topics, and can 
also send direct messages. Team members can passively monitor channels of interest, and will receive notifications 
when their handles or topics of interest are mentioned. Information of general interest to the team is often posted to 
Slack. Logs are searchable, so it works as an information repository.

9. Parallel processing is required to process direct broadcast streams from 
geostationary satellites
The data rate from the new generation of geostationary weather satellites (Himawari-8, GOES-16) is high enough 
that parallel processing is required to generate products with the current generation of CPUs. Furthermore, overall 
product latency can be reduced by processing a single image on multiple cores. Additional considerations include 
dependencies on products from previous timesteps and inter-algorithm dependencies. Some care and effort must 
be put into designing and implementing a parallel processing scheme.

10. Wherever possible, distribute pre-built binaries with bundled third party 
software
CSPP Leo and Geo software is distributed as binary tarballs, with all required third-party software pre-built and 
bundled. In practice we have found this method to be very effective. The advantages of this method are easy installation (untar and go), and elimination 
of a class of user problems including build issues and run-time issues due to different library and compiler versions. The disadvantages include limits to 
the number of platforms that can be supported, and that some effort must be put into pre-building portable libraries while ensuring proper internal 
linkage and external dependency minimization. However, since software dependencies tend to be common across packages (e.g. Python runtime, 
NetCDF4, HDF5), we can build libraries and language runtimes once and share across packages, with occasional updates for new library versions.

11. Be prepared to release rapid updates
The GOES-16 direct broadcast stream (GRB) was turned on in December 2016 and data from each instrument was added over a period of about 6 
months. During that period, data was considered to be provisional quality and the priority was to get software updates to users as soon as possible to 
allow them to generate products. To do this, we bypassed our usual release process in order to get rapid “interim” software versions to users, 
essentially developer snapshots of the current codebase which had been minimally tested. We found this to be an effective strategy, aided by 
automated testing infrastructure and effective use of issue tracking and version control.

CSPP Geo Overview: Geostationary Products Software for Direct Broadcast
The CSPP Geo project is funded by the NOAA GOES-R program to create software allowing users to 
process data received directly from geostationary satellites. 

All software is:

Publicly available and free of charge
Distributed as binary packages for 64-bit CentOS6-compatible Linux
Distributed with all required 3rd party software bundled
Easy to install and run
Released with an optional test data package

Software downloads: http://cimss.ssec.wisc.edu/csppgeo/
User support: csppgeo.issues@ssec.wisc.edu

Cloud and LST product 
quicklooks from the AIT 
Framework package (top 
and middle), and 
reflectance and brightness 
temperature quicklooks 
from the GRB package 
(bottom).

GOES-16 Preliminary, 
Non-Operational Data

Himawari-8 Processing Software
The CSPP Geo project has developed software to process data from the 
Advanced Himawari Imager (AHI), which is on the Japanese Himawari-8 
satellite. The software is currently at beta status. To obtain early versions 
of Himawari-8 software, contact csppgeo.issues@ssec.wisc.edu.

T h e G E O C AT L e v e l 2 
Software Package for AHI 
generates Level 2 products 
using algorithms that were 
developed for GOES-R. Both 
the Himawar iC loud and 

HimawariCast input data formats are supported. 

The Composite RGB Package for AHI generates 
RGB images emphasizing different aspects of the 
atmosphere and surface. The software uses 
formulas that were developed by Eumetsat and 
adapted by JMA for AHI.

 GOES-16 and GOES Rebroadcast (GRB)
The GOES-R satellite was launched in November 2016, and was renamed to 
GOES-16 when it reached geostationary orbit. It is the first of a new generation of 
U.S. weather satellites with greatly improved observational capabilities, carrying the 
Advanced Baseline Imager (ABI), the Geostationary Lightning Mapper (GLM) and 
multiple space weather instruments. ABI has greatly improved spatial, spectral and 
temporal resolution compared to the previous generation of imagers, and GLM is 
the first ever operational lightning mapper to be flown in geostationary orbit. 

Direct Broadcast users who have a line of sight to the satellite and the appropriate hardware can receive 
data from all GOES-R instruments via the GRB stream, and can generate products using CSPP Geo 
software. GRB has the lowest latency of the GOES-16 distribution methods.

Parallel processing is required to keep up with the higher data rate from the new generation of 
instruments, and to reduce overall product latency. Hardware requirements for each software package are 
available on the CSPP Geo website.

GOES-16 Processing Software
The GRB Software Package allows users to process the raw GRB stream 
with the CSPP Geo GRB software, reconstructing the products from all 
instruments as they were created on the ground system. Output is in 
NetCDF4 format.

During the Post-Launch Test (PLT) period, data from different instruments 
was added successively to the GRB stream, with the last instrument 
(GLM) added in June 2016. During this time, interim “dev snapshot” 
versions of the GRB package were released, incorporating the latest 
software improvements. Users are currently generating products in real-
time with the latest version, 0.4.6.

Version 1.0 of the GRB package is planned for end of 2017, and will include support for UDP 
multicast, improved logging, improved data validation and error handling, additional configuration 
options, support for product compression, updated documentation and various other improvements 
and bug fixes.

The AIT Framework Level 2 Software Package for ABI allows users to further process ABI Level 
1B data to generate Level 2 geophysical products. The core software was developed by the 
Algorithm Integration Team at NOAA as an integration point for algorithms that were developed by 
the GOES-R science teams.

The initial version of the AIT Framework Package will include research implementations of the 
GOES-R baseline algorithms, and will generate a subset of the baseline products. An alpha version 
of the software was released in June 2017, and a beta version will be released in late 2017. Users 
w h o a r e i n t e r e s t e d i n t e s t i n g e a r l y s o f t w a r e v e r s i o n s s h o u l d c o n t a c t 
csppgeo.issues@ssec.wisc.edu.

Later releases will include algorithm updates and additional products.

CSPP Geo 
Software

Data 
Products

Direct Broadcast
Receiving System

uncompressed 550GB/day (Mode 3)
compressed 135-140 GB/day (Mode 3)

215 GB/day (Mode 4)

GOES 13/15 
(GVAR)

GOES-16 (GRB)

Data rate 2.1 Mbps 31 Mbps
Raw data volume 21.5 GB/day 310 GB/day
Raw data volume (idle / 
null data removed)

14.24 GB/
day

99 GB/day (Mode 3)
150 GB/day (Mode 4)

GOES 13/15 vs GOES-16 direct broadcast data volumes* ABI Level 1B product volume (NetCDF4)*

*based on volumes observed at the SSEC GRB 
receiving station during PLT

 AIT Framework
Software
Package

L2 ABI 
(NetCDF)

L1 ABI
(NetCDF)

GRB Software
Package

GRB
stream

antenna / 
receiver

L2 GLM
(NetCDF)

L1 SUVI
(NetCDF)

L1 MAG
(NetCDF)

L1 EXIS
(NetCDF)

L1 
SEISS

(NetCDF)

Aerosol Detection: Smoke and Dust
Aerosol Optical Depth
Clear Sky Masks
Cloud and Moisture Imagery
Cloud Optical Depth (day/night)
Cloud Particle Size Distribution (day/
night)
Cloud Top Height
Cloud Top Phase
Cloud Top Pressure
Cloud Top Temperature
Land Surface Temperature (Skin)

Initial set of AIT Framework products

Clear Sky Masks
Cloud and Moisture Imagery
Cloud Optical Depth
Cloud Particle Size Distribution
Cloud Top Height
Cloud Top Phase
Cloud Top Pressure
Cloud Top Temperature
Low Cloud and Fog (*current GOES only)

Initial set of GEOCAT products

Himawari
Cloud

HSF
files

antenna / 
receiver

Himawari-
Cast

stream

HRIT
files

KenCast FAZZT 
software

GEOCAT
Software
Package

Imagery 
and L2 

products

Composite
RGB

Package

Comp. 
RGB 

GeoTiffs

Collaborators
NOAA / AIT: Steve Goodman, Satya Kalluri, Walter Wolf, Shanna Sampson and AIT team, Mike Pavolonis,
Andy Heidinger, Tim Schmit

UW-Madison SSEC: Kaba Bah, Denis Botambekov, Corey Calvert, Dan Forrest, Jordan Gerth, Mat Gunshor, 
Pat Heck, David Hoese, Jarno Mielikainen, Jerry Robaidek, William Straka, Andi Walther, Steve Wanzong

ABI L1B 
(PUG-format)

AIT 
Framework

core

CMIchanger

FW2PUG

ABI non-
Imagery L2 
(AIT-format)

ABI 
Imagery 

(PUG-format)

ABI non-
Imagery L2 
(PUG-format)

Quicklooks
scripting

L2 
quicklooks

ABI nav 
(AIT-format)

CSPP Geo AIT Framework Software

The AIT Framework package is composed of 
modules written in Python and compiled 
languages, tied together with Python “glue”

Composite RGB images

Lessons Learned

ITSC-21
Darmstadt, Germany

29 November - 5 December 2017


