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Observation impact diagnostics in an Ensemble
Data Assimilation System
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. Ch. 9+10 are the lowest channels used over land.
4 . ReS u I tS = at IS S h ow In some regions the dark shaded areas are negative or As seen (on the right below) bias problems are much

neutral but the green curve (bias removed a posteriori) is stronger over land than over sea.

So far only results for t=0 (“impact on analysis”). clearly positive. This indicates that AMSU and GPSRO (Model biases are different over land and sea).
Statistics have been computed for different cost-function components separately: have opposite bias. data over sea/land only
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Discussion

I (uncorr. noise) : VI (=) VE (=)

The interpretation of observation impact diagnostics is often not trivial. Statistical significance is a big issue
) (particularly for large forecast lead times). To facilitate the interpretation and to differentiate between model
and DA issues the work presented here has been (so far) restricted to t=0 (impact on the analysis).

1 , : .
It is explained that different parts of the cost function / = - (J +J' ) should be considered (interpreted)

6. Outlook: separately. :

3 3 g Examples are given for how the diagnostics could be linked to the following observational problems:
AsseSSI ng m paCt Of Observatlo ns « The use of too small observation errors in the DA system for AMSU-a

« Biases of AMSU-A channels €<~ Bias of GPSRO

Bias problems only show up if the bias is opposite to the bias which the verifying obs (here GPSRO) have
with respect to the model.

The diagnostics reveal inconsistencies. The separation into contributions from different observations is,

e effectivenumber = (X 1P /X0 1Pl

Work so far:
Cost-function J gives impact of all observations assimilated at time t = 0.
Interpretation of different components (corresponding to individual observations)
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is suggestive but not rigorous ([x“ — x”] depends on all observations used in assimilation). however, not rigorous. Particularly for strongly overlapping observations the interpretation in terms of impact
More rigorous approach: (on analysis or forecast) is problematic. A method is under development to show the “denial impact” for

Cost-function for data denial experiment. Replace: xt — xa/t (analysis not using y;’) individual observations (e.g., a single AMSU channel). See sec. 6..
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