# **Current CrIS Calibration Activities at UW-SSEC**





Joe Taylor, Dave Tobin, Hank Revercomb, Bob Knuteson, Dan DeSlover, Lori Borg, Michelle Feltz, Jon Gero, Graeme Martin, Ray Garcia, Greg Quinn Space Science and Engineering Center, University of Wisconsin-Madison, 1225 West Dayton St., Madison, WI, 53706

ITSC-21 Darmstadt, Germany 29 November - 5 December 2017

# **Polarization Correction**

### point of contact: Joe Taylor, joe.taylor@ssec.wisc.edu

- Incident radiance is partially polarized by reflection from the scene select mirror (SSM); small degree of polarization in the IR for uncoated gold mirrors
- The orientation of the polarization axis of the scene select mirror changes with scene mirror rotation
- When coupled with the polarization sensitivity of the sensor, this produces a radiometric modulation of the detected signal that is dependent on the rotation angle of the scene select mirror and creates a calibration error



"Earth view" data of deep space at multiple view angles collected during the spacecraft pitch maneuver (2012-02-20) has been used to characterize the polarization effects of S-NPP CrIS



- A polarization correction module has been integrated into our processing
- p<sub>p</sub> and α values have been derived from pitch maneuver data
- An example of the correction for 12 hours of data (2016-JD019) illustrates:
- Mean correction is largest in SW (when expressed as brightness temperature), and approaches 0.3 0.4 K for 220 – 230K scene temperatures.
- Mean correction in SW show very similar behavior to CrIS IASI SNO residuals
- Mean correction in LW and MW are relatively small, but not insignificant for cold scenes
- Next Steps include: (1) Test impact on SNOs, CrIS VIIRS, and obs-calc; (2) Further refinements to  $\alpha$  and  $p_p$ ; (3) Radiometric uncertainty analysis for correction

# A New Approach to CrIS SA Correction

#### point of contact: Hank Revercomb, hank.revercomb@ssec.wisc.edu

- The well-known self-apodization affect broadens the Instrument Line Shape (ILS) of CrIS off-axis pixels. To make spectra from all 9 fields-of-view interchangeable, a well-defined matrix inverse is applied. While this approach works remarkably well, some ringing artifacts result and its absolute accuracy is hard to confirm.
- We have developed a new, rigorous correction to address both of these issues
- The correction in the interferogram domain takes the form of several terms of a Taylor series expansion
- Each term is rigorously expressed in terms of Fourier transformations



The interferogram apodization shown in the figure is defined by a spectral Kernel in the new algorithm, and is corrected for using Fourier transformations and a separate well-defined spectral scale shift



# Spectral Ringing Correction and Validation

#### point of contact: Bob Knuteson, robert.knuteson@ssec.wisc.edu

- The CrIS LW detector response falls rapidly to zero near the center of the 15 micron CO<sub>2</sub> band
- This causes issues near the LW band edge in the raw radiances, requiring apodization to remove ringing
- We have developed a method to correct for LW band edge errors thereby improving the unapodized SDR product





# Removal of CrIS Spectral ILS Dependence on Responsivity

## point of contact: Hank Revercomb, hank.revercomb@ssec.wisc.edu

- CrIS radiances currently have a spectral Instrument Line Shape (ILS) with a very weak dependence on responsivity, arising from the non-flatness of the responsivity and its finite bandpass
- The effect adds subtle ringing to CrIS spectra (referred to as "true" ringing)
- To avoid errors from this "true" ringing, 150 calculated spectra used for retrievals and assimilation must also use the responsivity
- We are developing a new, efficient, and accurate approach to eliminate this type of responsivity dependence
- Correction terms modify the ends of interferograms, I(x), as needed to remove 50 ringing (e.g. shown in the figure below for the first correction term)





# Airborne Cal-Val with the UW-SSEC S-HIS

## point of contact: Joe Taylor, joe.taylor@ssec.wisc.edu

Recent S-HIS airborne Cal-Val campaigns: SNPP 2015 (Keflavik Iceland), GOES-16 PLT 2017 (Palmdale CA and WRB AFB GA, included SNPP underflights); S-HIS uptime > 99%

| 2015-02-23 | Engineering test flight; SNPP                                          |
|------------|------------------------------------------------------------------------|
| 2015-03-07 | Transit flight                                                         |
| 2015-03-15 | SNPP, METOP-B, SNPP                                                    |
| 2015-03-19 | Multiple passes over Greenland Summit Station                          |
| 2015-03-23 | METOP-A, SNPP, Aqua                                                    |
| 2015-03-24 | SNPP                                                                   |
|            | <ul> <li>poor scene conditions for SNPP radiance comparison</li> </ul> |
| 2015-03-25 | METOP-A, SNPP, METOP-B, Aqua                                           |
|            | <ul> <li>poor scene conditions for SNPP radiance comparison</li> </ul> |
| 2015-03-28 | SNPP, SNPP                                                             |
| 2015-03-29 | Aqua, METOP-A, METOP-B, SNPP                                           |
| 2015-03-31 | Transit flight                                                         |
|            |                                                                        |











# Detecting Climate Trends Using AIRS, IASI, and CrIS BTs

## point of contact: Dan DeSlover, dan.deslover@ssec.wisc.edu

Extract near-nadir observations (AIRS field-of-regard 45 & 46; CrIS and IASI FOR 15 & 16 using the innermost FOVs); full-resolution stored into daily files



• Select AIRS/CrIS/IASI channels for analysis (16 comparable spectral channels)



## S-HIS Calibration, Calibration Verification, and Traceability

- Pre-integration calibration of on-board blackbody references at subsystem level
- Pre and post deployment end-to-end calibration verification
  - Periodic end-to-end radiance evaluations under flight like conditions with NIST transfer sensors.
- Instrument calibration during flight using two on-board calibration blackbodies