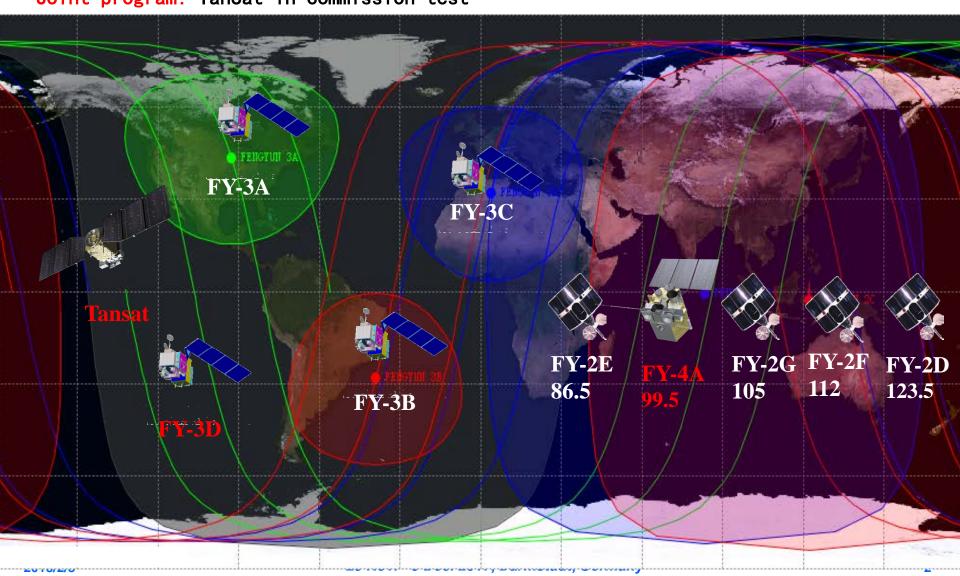


Updates on CMA FENGYUN Meteorological Satellite Programs

Peng ZHANG


National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA)

1. Missions on the orbit

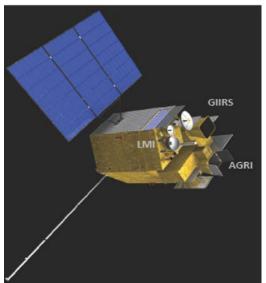
FY Program: 9 on the orbit, 5 in operation, 1 in trial operation, 1 in on-orbit test Joint program: TanSat in commission test

2. Latest Progress

FY-4A

- Launched in Dec.11, 2016
- The commission test in first phase for instruments with geolocation and calibration have been completed this Sept.
- The commission test in second phase for retrieval products is ongoing.

TANSAT

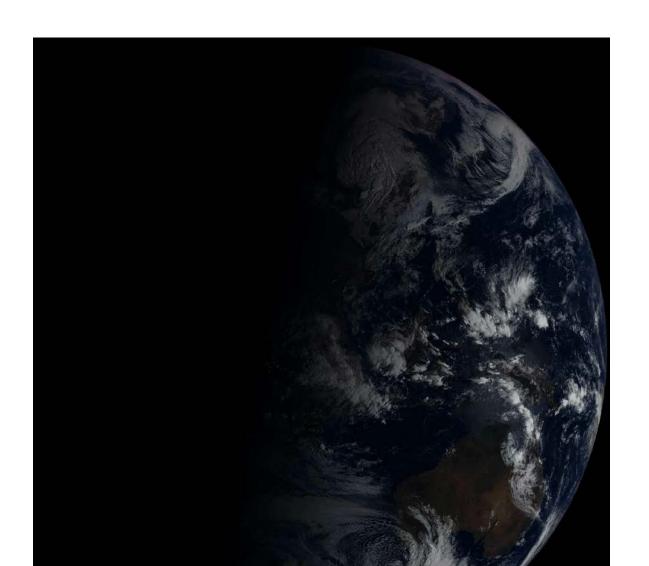

- Launched in Dec. 22, 2016
- A joint R&D satellite program initiated by MOST and supported by CMA and CAS.
- NSMC is responsible for data reception, processing and distribution, taking advantage of current FY-3 ground segment resources.

FY-3D

- Launched in Nov. 15, 2017
- The commission test started and is expected to be completed within 6 months.

FY-4A: Launched on 11 Dec, 2016

FY-4 is the CMA new generation meteorological geo-satellite series, expected to support various weather-related services, including weather forecasting, disaster prevention and reduction, and monitoring and warning of space weather.


Spacecraft:

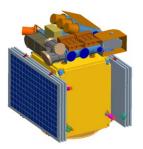
- Launch Weight: approx
 5300kg
- 2. Stabilization: Three-axis
- 3. Attitude accuracy: 3"
- 4. Bus: 1553B+Spacewire
- 5. Raw data transmission : X band
- 6. Output power: >= 3200W
- 7. Design life: over 7 years

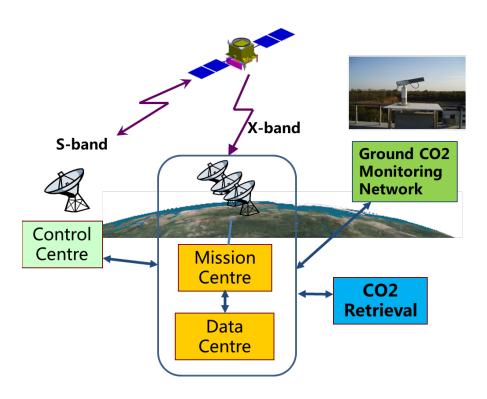
Instrument		Purposes
	AGRI: Advanced Geosynchronous Radiation Imager	14 -channel Earth images
	GIIRS: Geostationary Interferometric InfraRed Sounder	Clear-sky atmospheric temperature and humidity profiles
	LMI: Lightning Mapping Imager	Lightning distribution map in China area
	SEP: Space Environment Package	Space electric and magnetic environment information

One day RGB images animation from AGRI / 15 minutes

TANSAT: Launched on 22 Dec, 2016

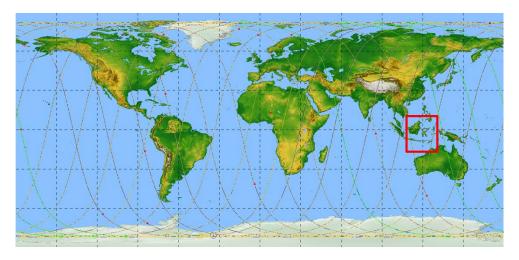
	Parameter
Orbit	700km,13:30, Ascending Local Time
Mass	600kg
Power	420 - 610W
Size	150cm(Ys) x 180cm(Zs) x 185cm(Xs)
Data Storage	128 Gb
Designed Lifetime	3 years
Spacecraft stabilization	3-axis, Pointing stability:≤0.001°/s;

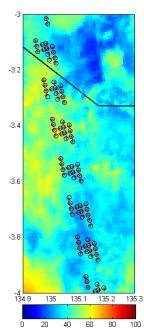


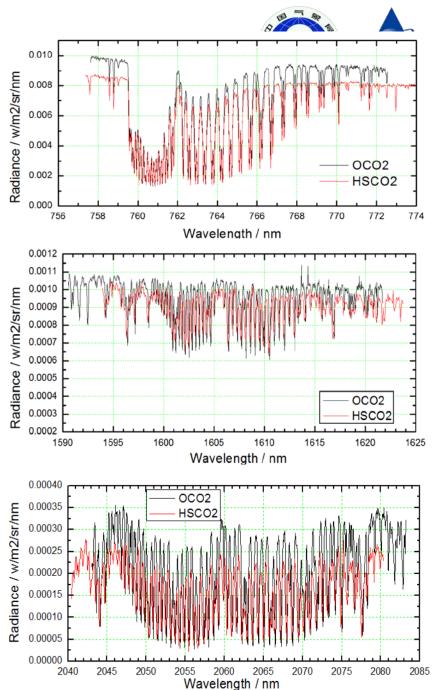

Mission objectives to acquire global atmosphere column-averaged CO2 dry air mole fraction

Instruments

- 1) CO2 spectrometer
- 2) Cloud and Aerosol Polarize Instrument(CAPI)

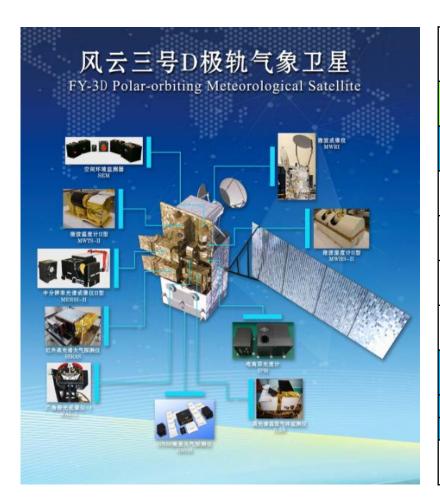




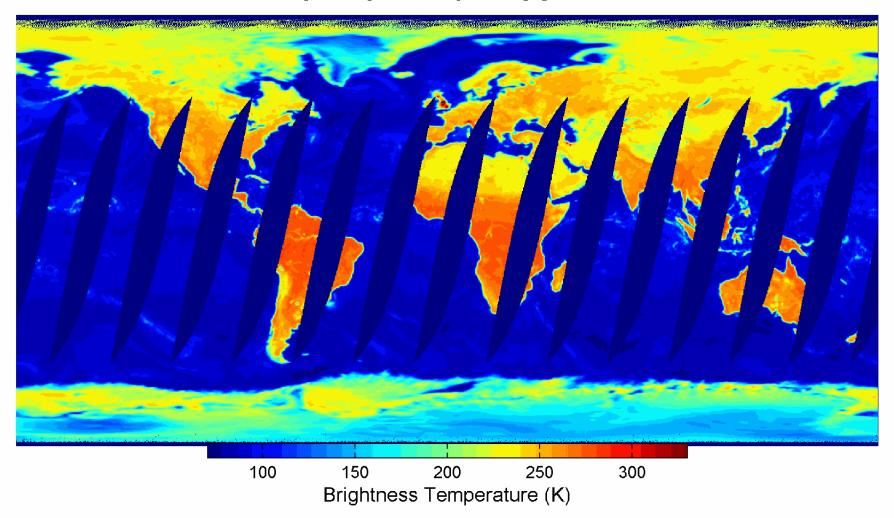

TANSAT Ground segment by CMA

CO2 and **O2** Absorption Spectra

Comparison with OCO-2


FY-3D: Launched on 15 Nov, 2017

Parameters	Satellite Specification	
Orbit type	Near-polar sun-synchronous	
	orbit	
Orbital altitude	836 Km	
Orbital inclination	98.75°	
Precision orbit	Semi-major axis deviation:	
	$ \Delta a \le 5$ Km	
	Orbital inclination deviation:	
	Δi ≤0.1°	
	Orbital eccentricity ≤ 0.003	
Repeat cycle	5.5d (Design range is in 4-10	
	d)	
Eccentricity	≤0.0025	
Local time drift at	15 min within 4 yrs	
ascending node		
Launch window	local time at ascending node:	
	13:40 - 14:00	
Design lifetime	5 yrs for design, 4 yrs for	
	assessment	



	OLOGICAL AL
Payload Name	Channel Numbers with
	Spectral Coverage
MEdium Resolution Spectral	25 (0.413 – 12 μm)
Imager (MERSI-2)	
Hyperspectral InfraRed	1370 (3.92 – 15.38 μm)
Atmospheric Sounder (HIRAS)	
MicroWave Radiation Imager	10 (10.65 – 89 GHz)
(MWRI)	
MicroWave Temperature Sounder	13 (50.3 – 57.29 GHz)
(MWTS-2)	
MicroWave Humidity Sounder	15 (89.0 – 183.31 GHz)
(MWHS-2)	
GNSS Occultation Sounder	29 ()
(GNOS)	
Greenhouse-gases Absorption	5540 (0.75 – 2.38 μm)
Spectrometer (GAS)	
Wide angle Aurora Imager (WAI)	1 (140 – 180 nm)
Ionospheric PhotoMeter (IPM)	3 (130 – 180 nm)
Space Environment Monitor	25 ()
(SEM)	

- **■** Four brand new instruments added (HIRAS, GAS, WAI, IPM)
- One Successive instrument updated (MERSI-2)
- All the successive Instruments performance are improved significantly

10H 20171126 DESCEND

- 15 Nov, 2017: Launch day
- 24 Nov, 2017: Afternoon orbit adjustment as constellation with morning orbit (FY-3C)
- 25 ~ 26 Nov, 2017: All instruments except infrared channels have been switched on
- 27 Nov, 2017: DPT has been switched on and global data have been acquired from SSC Kiruna station and KSAT Troll station
- 6 months are expected for commission test
- FY-3 international preprocessing software package will be released to support DB users for MERSI-2, MWTS-2, MWHS-2, HIRAS, MWRI
- All the data will be released and users can access the FY-3D data through our web portal freely after commission test

