SATELLITE NAVIGATION AND DE-NAVIGATION

F. W. Nagle
NOAA/NESDIS Systems Design and Applications Branch
1225 West Dayton Street
Madison, Wisconsin 53706 USA

ABSTRACT

The term NAVIGATION has several cormotaticons, but among satellite
meteorologists it refers to the process whereby one applies a set
of  kriown  orbital parameters, along with the scarming characteristics
of an on-board instrument, to compute the position of a satellite
irn cpace at scome future instant, and alsc the point(s) on the ground
which the satellite will view at that moment.

Ore may ask if this process can be inverted. Thus, if we are
given a set of points on the Earth’s surface viewed by the satellite
in the recent past, sometimes called the "footprint®, is it then
possible to drive the navigation algorithm backward in order to recover
the orbital characteristics? And if it is possible, why would anycorne
wish to derive the orbital characteristics from a set "of Earth
laocations? This inverse process will be termed 'de-navigation® in this
paper, arnd it is our purpose 'to discuss its feasibility and usefulness.

1. TEMFORAL AND SPATIAL COORDINARTES

1.1 Time Units

Toa forestall confusion involving certain terms, we shall review
the temporal arnd spatial units used below. The term Julian Day Number
is a measure of time, and it denctes the riumbers of days and fracticon
thereof which have elapsed since 12 o’clock Universal Time on 1 Jarnuary
4713 EC. The reader may wornder at this seemingly strange date as the
origin of the Julian Day chronology. It is riot our purpose here to
explain this origin, and the reader is referred toc Durant (32) for a full
explanation of this choice, as well as the reason for the name 'Julian’,
which has nothing to do with the Julian calendar or with Julius Caesar.
The term Julian Day Number is unfortunately confused with a similar
termn, Julianm Date, which is used bzth in civilian and military computer
systems to mean simply the two-digit year indicator, followed by a
three-digit <sequential day of the year, e.ag. S3ES to mean 21 December
13988S. One must keep in mind that a day within the Julian Day Number
(JDN) chrornology begins at noony not midnight, the reason being
that historically Ewropean astronomers preferred that all observations
made in the course of a single night be ascribed to the same Julian Day
number, which of course would rot be so had the date changed at
Greenwich midnight rather than noon. The JDN which began at 12 UT an 3
August 1987 was £447011, from which the reader may deduce the JDN for
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any other calendar date.

On a computer system such as an IEM 4381, a double-precision
quantity has a resolution comparable to about 17 decimal digits, so that
by storing time expressed in JDN within double precision worde, ore
can achieve a resolution in time of the order of a billionth of a day,
easily adequate for most satellite rnavigation.

One can readily see the advantages of reducing measurements of
time to a single scalar value, allowing us to dispense with months
which may have 31, 30, &8 or sometimes 23 days, with leap years
and common years, the distinction between the Julian and Gregorian
calerndars, etc.

1.2 Spatial Coordinates

The point in the sky which the sun ccocupies at the instant when it
crosses the Egquator from south to rorth about 22 March is called the
Vernal Equinox, or sometimes the First Point of  Aries, an old
astrological name. Usirng the center of the Earth as the origin, the
Vernal Eguirmox to define the x—-axis, the North Fole to define the
z-axis, and a point on the Egquator 90 degrees sast of the Vernal Equinox
as the y-axis, wone can construct a dextral (right-hand) orthonormal
coordinate system which we call the celestial coordinate system.
Sirnce the Vernal Equinox 1is almost a fixed point in the sky, much
like a seemingly—-fixed star, the celestial coordinate system appears
to rotate westward with respect to the Earth at the rate of ZE0
degrees per sidereal day, and in fact it 1is by the motion of the
Vermnal Equirnax that a sidereal day is defined (1).

The' terrestrial coordinate system is analogous to the celestial
system, having the same origin and the same =z=-axis, but with an
x—axis fixed ¢to the Earth arnd directed toward the longitude of
Greenwich in the plare of the Equator, arnd with a y—-axis oriented
30 degrees east of Greerwich. Clearly the terrestrial and celestial
systems rotate with respect to ore arncther, and a transformation
of a position vector in ore system to the other at any time T is
effected by a matrix equatiocn of the form:

cos(a) -sin(a) 0
Vv = sin(R) cos (R) 0 Vv (1)
I » n =1
O ] 1
where AR, the irnstantanecus longitude of the Vernal Eqguinox, is
given by
A = —-215. 465
-360.9856473(T — 24423248) ()

The angle AR 1is expressed in degrees, and T in Julian Day Number. The
matrix is orthogonal, i.e. its inverse is also its transpose, so that
the direction of the transformation depends merely on the sign of the
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arigle A. The constant 3€0. 3856473 is the westward rate of movement of
the vernal equinox in degrees per mean solar day.

The more common terrestrial coordinates of latitude and longitude
are polar variations of the Cartesian terrestrial system, and are
readily deducible from the latter by simple trigorncmetric relationships.
The distirction must be kept in mind betweer geodetic and geoccentric
latitudes, as described elsewhere (1).

&5 DE-NAVIGATION

The path of an orbitirng satellite such as the NORA or DMSF series
whern expressed in celestial coordinates is very rearly a great circle,
at least over a short period of time. The orbit of a sun—-synchroncous
satellite, if it is to remain surn—syrnchronous, must precess 360 degrees

per  year in order that an ascernding pass alwayes present the came
relaticnship to the sun.  This amounts to just less tham ore degrees per
day, o about a  fouwrteenth of a degree per orbit. Hernce, over any
significant fraction of an orbit, the path of the satellite is very
close to a true great circle, and if it is rnecessary to consider the

precessicn of the orbit, the rneeded adjustment is riot difficult.

Let us assume that we are given a set of sub-catellite points on
the Earth's surface, presumably expressed in terms of latitude and
longitude, together with the times associated with those points, and
comstituting at least one complete orbit including two Egquator
crossingsy not necessarily consecutive. If the latitudes are gecdetic,
these mist be converted to geccentric, but otherwise the given
coordinates are easily converted to terrestrial Cartesian coordinates by
straightforward trigonometry. Each of the three-dimernsional Cartesian
vectors thus ocbtained is in turn easily chariged to celestial coordinates
by wusing (1). Alternatively, the terrestrial longitude of the Vernal
Equinox is  known as a function of time, and is given by (&) above, so
that we could first have converted terrestrial longitude to celestial
lorigitude, and therce to celestial Cartesian coordinates.

From HKepler's third law we know that the semi-major axis of an
orbit is  proportional to the two-thirds power of the period, where the
constant of proportionality estimated by the author from orbital data
stored on  the NAS 3000 computer at NMC is 330.998274E. The semi-major
axis 1is expressed in kilometers, and the pericd in mirnutes. The periocd
itself 1is fournd by interpolating a set of krnown sub-satellite positions
to the times of two or more Equator corossings. We now have an accurate
estimate of semi-major axis, although as we shall see presently, we
shall not use it except perhaps as a reasoriableress test of the pericd.
Next, we can compute the cross product of any two ron—-collinear
catellite position vectors which by its orientation in celestial space
gives us the orientation of the orbit. This vector cross product,
normalized to a length of one, is called hereafter the Vector Orbital

Flane (VOPR). It is of course perferable if the two non-collinear
satellite positions are nearly normal to each cther to maximize the
accuracy of their cross product. The angle between VOP ard its own
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projection in the plare of the Equator, added to 390 degrees, is the
incliration of the orbit. The angle between the csame projection and the
celestial x—axis, added to 90 degrees, is the right ascension of the
ascending nrwode, that is, the argle measured eastward along the Equataor
from the Vermnal Eguinox to the point of northward Equator crossing of
the satellite.

of the six classical orbital elements (semi-majocr axis,
eccentricity, worbital inclination, right ascension of the ascending
node, argument of perigee, and mean anomaly) we have now determined
three. The remaining three in principle could be found, though in
practice it is difficult or impossible to do so with much accuracy.
Kepler's second law stating that the areal velocity of a satellite is
constant can be written as

c = »*6

and sirce ©® can be estimated from the succecssive positiocns of the
catellite along the ground, the radius vectors from the center of the
Earth to the <catellite can be aobtained. Ta these known radii, an
ellipse could be fitted by some least-sguares means. The point in the
orbit with the shortest radius is the perigee, and that with the
longest, presumably diametrically opposite to perigee, is the apogee.
The sum of these two radii is the major axis. The center of the ellipse
everily divides the major axis, and the distance between the center of
the ellipse and the center of the Earth (which is a focus of the
ellipse) can be used to determine the eccentricity. If the epoch is
taken to be the moment when the satellite is at perigee, then the mean
anomaly cam be set to zero, and in principle we now know the six
classical , elements, at least for the case of a pure two—bady Keplerian
orbit.

In practice, the foregoing procedure is of little value because
the known Earth locatiorns are rarely precise encugh to allow the rneeded
calculations to be accomplished without introducing large errors in the
radius vectors. The eccentricity of a NORA or DMSFR catellite is roughly
. 0015, and the reader by using this value in the equation of an ellipse
may satisfy himself that the difference between the semi-major and
semi-mincr axes is a mere 8 meters, whereas the mean diameter of the
orbit is in the rieighborhood of 14000 kilometers. Another technigue was
therefore preferred.

ARs rixted, krowledge of the vector orbital plarne (VOR) at a given
time provides us with the orbital inclination and right ascension of
ascending node. Since the rate of change of the right ascension is
roughly  krnown, or better, can be accurately inferred by noting the
charige in VOF over a periocd of several days, and since the inclination
is almost invariant, we can find the orientation of the orbit at any
time in the riear future, i.e. for a span of several weeks ahead.

Let us nrext make the inaccurate assumption that the satellite
nmoves about the Earth with a period found by observing successive
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0 . 83 . 00 .83 . 00
1 1. 36 7.41 7.54 79459
2 L 02 3. 32 3.3 44,81
3 -. 07 - 05 .08 -=49,08
4 . OF . 84 . 84 cZ. 88
S < Q7 .03 . 07 S.09
= -. 08 -. 42 .42 -16.78
7 -. 02 -. 08 .08 -14.75
e .03 .91 .21 11.01
3 .07 .03 .08 2.71
Croese—track errors:
0 93 . 00 . 59 . Q0
1 2. 07 -. 34 2.27 —24.44
2 27174 .16 .02 7. 86
3 -. 03 .85 .89 30.35
4 - 18 . 01 .18 44, 52
S -.039 -1.534 1.94 -18.350
= . 09 . 00 .09 .15
7 - 01 l.22 1.22 "12.90
8 -. 01 -. 08 .08 -11.98
3 . 01 -.79 .79 -9.89
showing ten harmonics, the zerocth through
along-track and cross-track errors. The fourth column of values given
above for along-track amplitudes of greatest interest.
there 1is a constant term correction of .83 kilometers, a first harmonic
component of 7.54 km, and a second harmonic of 2,32 km. Thereafter the

higher harmonics are all very small,
purely circular motion, corrected
second  harmonics of the error,

suggesting that the assumption of a
by removing the zeroth through the
results in errors which are generally of
the worder of a kilometer. In fact, in this case, the remaining error,
compared against the given Earth locations, had an RMS value of only
1.59 kilometers, a discrepancy which 1is marginally acceptable for a
high-resolution Earth-viewing instrument such as AVHRR, and easily
acceptable for a sounding instrument such as HIRS, MSU, or SSTI aboard
the NOAA or DMSP spacecraft.

The foregeoing table shows that cross-track errors tend to be much
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emaller than the along-track errors, though again they could be easily
removed by a harmonic correction.  Column S shows the phase angles of
the alorg-track and cross-tracks errors.

This case displaying the harmonic error comporents for the DMSF-7
satellite is of interest, for it represents a practical and rnecessary
instance of de-navigaticn. The author has experiernced great difficulty
in obtaining the classical orbital parameters from the Air Force, not
becauce the latter is unwilling to release them as a matter of policy,
but simply because their distribution is not the routine responsibility
of - any individual, and as a result they are usually obtainable only by
special request and for a limited time only. On the other hand, the
Earth-located micro-wave retrievals from the DMSF-7 can be accessed on &
daily basis from the NAS 3000 system at Suitland, Md, through the Mcldas
system at the University of Wisconsin. Although these data are
internded for meteorological use, not for navigaticonal purposes, it has
Secmme both feasible and necessary to de-navigate the Earth locations in
mrder  to compute  future positions of satellite for plarming purposes.
An  immediate disadvantage of the foregoing technique, however, is that
it affords no information of satellite altitude.

On the other hand, there is another reason for de-navigating Earth
lecations even for satellites like those of the NOAAR series for which
the crbital elements are widely published and distributed. One of the
mast frequently wused orbital prediction models is the Brouwer-Lyddane
model (2,4), which is a lengthy and involved program, and which may be
unavailable at many computer sites. It is relatively slow in execution
cwing to its complexity, and is itself not free of error. Its size ard
complexity are even more disadvantageous on a small computer, such as a
personal computer (FC) or lap-top model, than on a larger system such as
the NARS-3000 or IBM 4381.

By de-rnavigating the Earth locations, we have obtaired pericd,
vector orbital plane, and the zerocth through the second error
component s, == that we can then apply a very simple and fast algorithm,
as described below, to compute future (and past) satellite positions
with an accuracy competitive with that of a classical prediction mcodel,
arnd with easy adaptability to a small computer system. Moreover, if
cour original Earth location data are accompanied with information about
satellite altitude, then that too can be harmonically resolved so that
we row obtain predictions of height as well as of sub—-satellite
locations. The computer language in which the simple model was written
o the SSEC McIDARS computer, Madison, is High Level Faortran (HLF),
which incorporates vectors and matrices as variable types, thus allowing

-

the code to be written concisely in 3-dimensicnal vector notation (5).

Let us review and quantify the foregoing. Firstly, we are given a
set of Earth-locations representing the sub-satellite points for
a polar-orbiting satellite, encompassing at least two Equator crossings
in the same direction, so that we can estimate the nodal pericd of the
satellite. Normally, none of the sub-satellite points will fall exactly
on the Equator, so it may be necessary to do a bit of careful
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interpolation to find the precise moments of Equator crossing.

Let us introduce the following notation, where the superiocr arrow
will  be used to express a vector quantity. We use the unit vectors
I, J, and HK_toc dermte a right-hand orthonormal basis in the celestial
system, where I lies in the equatorial plane pointing from the center of
the Earth toward the Vernal Equinox,_ T toward a point 90 degreeg
eastward of the Vernal Eguinox, and K toward the North Pole. Let N
denctg the wunit vector pointing toward the satellite’s ascernding node,
ard E a wunit vector in_ the equatorial plare pointgd 30 _degrees
east of the ascendirg_riode N. Clearly, the angle between I and N is the
right ascension. P dermotes the unit vector orbital plane, and can be
computed as the normalized coross product of  any two non—-collinear
satellite positions. Let P’ be the projection of P onto the equatorial
plare, ard let M be a unit vector in the orbital plarne pointing towaorrd
the rorthernmost position of the satellite. We denote the epoch T, as
the time of first equator crossing, and by AR the angular rate of charge
of the right ascension in degrees per day. Finally, let U ba a
urniitizing operator which normalizes any vector by dividing it by its cwn
components of  an arbitrary vector. Then at the imitial time T

F=U(8 x S_)

' 2
where §, and S, are two rnon—collinear satellite position vectors,
perferably chosen so that they are approximately orthogonmal, or
ceparated by about 25 minutes in time. Moreover,

F* = F(I)I + ()T + O;

E = U(E’ X E)

E=KxN

M=FxN
At some  later (or earlier) time T, the following relationships
obtain:

N(T) = cosine(At) N + sine(At) E

FP(T) = N(T) x K mag(RF?)

- - - -

F(TY = P2(I) I + PP (J) J + F(K) K

M(T) = F(T) x N(T)
where t = (T = T,), and the mag( ) operator_ dernctes the magnitude
(length) of a vector. The three vectors N(T), M(I), and _P(T)
constitude an  orthorormal basis, with two of  them (N(T) and M(T))
lying in the orbital plarne. If W is the nodal periocod of the

satellite, inferrable from the times of successive equator corossings,
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an approximate position of the catellite can be estimated at time T as
S(T) = cosine(260 t/W) N(T) + sine (360 t/W) M(T)

The discrepancy between this crudely-estimated positicon, and the
krimwn Earth location can be obtained, i.e.

-y b e
X(T) = 8T = S

— -

Let us use the lower case letters '?, jy and k to dencte an
orthonormal coordinate system attached to the moving satellite,
where K is a unit vector pointing dowrward toward the center of
the Earth, i points in the direction of motion of the satellite,
and j points to the right of the meticn. We have:

- -
K(T) = =U(S(T))
T(M = k(T x F(D
T = KM x (M
Then the discrepancy vector can be resclved into  vertical,

along-track, and cross—track compornents by:

X(T) * i(T)

x(T) =

— —
y(T) = X(T) * (T
2(T) = X(T) % R(T)

where #* is the dot product coperator. These three error components can
be resoclved by a Fourier analysis as a function of the nodal anomaly
(ZE0 t/T), and the resulting coefficients then used to correct the
approximate position S(T) with a more precise oned

- - -
S(T) = S(T) + i (c0 + c1 cosine(A-e )
+ ce cosine((E(Q—gz)) (3)
The values c0, c¢il, and c2 are cmsine coefficients obtained from
the Fourier analysis, and e and e are corresponding phase angles. We
have now corrected the satellite position vector S(T) for the

along-track error assocciated with the first approximation. Similar
corrections may be applied to remove cross—-track and vertical errors as
well, though these are usually far smaller than the along-track error.
In fact, for the NORA-10 satellite on 10 September, the Fourier
grror components were:
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harmonic X phace y phacse -4 phase

0 S. 32 180. 00 0. o0& 0. 00 4. 30 0. 00
1 14.65 107.04 0.74 €1.88 8.24 16. 350
e 0., 78 -4€.29 0,01 23. 26 1.47 -0, 21
3 0.04 -3.735 0.0 40, 44 0,01 £9. 30
4 0.03 13.94 0. 01 37. 48 0. 01 c4. 16
S 0.01 29.63 0.01 -21.30 0.01 -2S. 24
= 0. 02 -26.19 0. 01 -S. 29 0. 01 =7. 44
7 0. 02 -8.70 0.01 4,12 0,01 2. 75
8 0. o -6. 02 0.01 -12. 45 0.01 -7. 60
9 0. 02 3.61 0. 00 19. 44 0.01 11. &
showing that the amplitude of the alocrig-track error was 14.65

kilometers, whereas the cross—-track amplitude was .74 km. The maximum
vertical amplitude, if we care to remove it, is 8.24 km. The biases and
RMS errors of the satellite positions, predicted five days into the
future, i.e. for 15 Sepetmebr 1987, expressed in kilometers, were:

Xy Yy = BIAS: 4, 09 0.02 =-0.04

RMS: S DO 0.S6 . 06
where a positive x-bias means that the satellite position predicted
by equation (3) was ahead (further along the orbit) than the
true position. This result compares favorably with the position

predicted by the Brouwer-Lyddare model, which had 10.38 km as the
alocrng-track RMS error, versus 5.55 km for the simple model.

3. SUMMARY

De-ravigation of Earth-located satellite data affords not anly
a means to wobtain orbital characteristics which may otherwise be
difficult to obtain, but alsc allows the use of a much simplified
navigation algorithm, suitable for small computers, faster than the
classical Keplerian—-Newtonian models, and competitive with the latter in
accuracy.
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