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1.  INTRODUCTION

The U.K. Met Office has recently implemented a TOVS retrieval scheme which
uses a forecast profile as a first guess in a minimum variance retrieval of temperature
and humidity (Eyre et al, 1986). An initial estimate of the profile with known error
covariance and satellite measurements with known error covariance are combined
with weights that minimise the expected error in the retrieved profile at all levels.
Preliminary results with the scheme (as gauged by comparisons with collocated ra-
diosondes) show that we now have retrievals of significantly higher accuracy than
those from a previously used regression scheme (which effectively used a climato-
logical first guess). However, comparison of the forecast with the radiosonde shows
that the first guess and the retrieval are of comparable accuracy, suggesting that
the retrieval is providing no additional information. Admittedly this validation is
principally over N.W. Europe where the 6-12 hour forecast may be expected to be
very good and any improvement difficult to make. Nevertheless, if we are modelling
the problem correctly the minimum variance solution should be an improvement
over the first guess. The purpose of this work was to find our sensitivity to errors
in the ‘model’ thereby establishing why the theoretical improvement over the guess
profile is not realised and also to obtain a better ‘model’.

2.  THEORY AND METHOD

The minimum variance solution is a linear one and assumes a linear forward
problem:

Y - Yo = K.(X; — X,) (1)

where Y and X, are the brightness temperature measurements and true atmo-
spheric temperature profile and Y, and X, are the forecast values. K are bright-
ness temperature derivatives dY /dX (‘incremental weighting functions’) and are
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assumed, for now, to be independent of X. Note that X includes both temperature
and humidity profiles which are to be retrieved simultaneously. If the measurements
Y and forecast X have error covariances E and C respectively, then the minimum
variance solution, 5(, is

X=X, + (K.C)T(K.CKT +E)"1.(Y -Y,) (2)

or X=X+ W.(Y-Y,)

(See Rodgers, 1976). The expected value S of (X — X¢).(X — X¢)T , may be writ-
ten,

S=C-WK.C (3)

The diagonals S;; are the expected error variances of the retrieval at the profile levels
and the ratio S;;/Cj; gives the reduction in variance expected (this ratio is called
the fractional unexplained variance, FUV). The matrices C , K and E constitute
the ‘model’ discussed in the introduction and it is the sensitivity of the retrieval
to these parameters with which we are concerned. This sensitivity is gauged by
calculating the error covariance S’ expected when the true conditions are C’,E’
and K’ but C,E and K have been used to derive W. S’ may be shown to be:

S'=C'-WK'.C'-(WK'.C)T+W.(K'.C'KT+E)WT (4)

which reduces to equation 3 when C’ — C, E’ — E and K’ — K. This equation can
be used to study the theoretical sensitivity of the scheme to incorrect assumptions
about the principal parameters, mainly by examining the diagonals SJ'-j.

New estimates of C , K and E were obtained and used both in the simula-
tion described above and to perform retrievals on real data. The source of the
new estimates was a data set collected over three months of collocated forecast,
measurement and radiosonde data. These data were split into two sets for the
study, independent data being (arbitrarily) the even days of the month and the

dependent data being the odd days. The dependent data were used to calculate
the matrices and the retrievals were performed on the independent data. To ease
description of the results the following convention is adopted. A result described as
P10 W(P2) indicates an estimator W derived using a matrix P2 was used where the
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true conditions were actually described by P1. For example, EpOW(E) describes
the result of using a W derived using E with measurements that actually have an
error covariance Ep. Normally there will be three simulations:

o POW/(P)—the expected result with the original parameter,

¢ P'OW(P)—how we may expect to ‘suffer’ given the wrong parameter in the
operator,

o P'OW(P’')—how well we can expect to do with ‘correct’ parameters. (We
expect P’ to be nearer the truth than P)

The following three sections deal with each matrix parameter in turn, firstly
describing how the new estimate was obtained, secondly giving the results of the
simulation experiments and finally the results using real data.

3. C - FORECAST ERROR COVARIANCE

3.1 C: Derivation

The original forecast error covariance matrix, denoted hereafter by C1, was
obtained from the Meteorological Office Forecasting Research Branch and was cal-
culated by comparing 12-hour forecasts with the next verifying analysis. A single
matrix was supplied to describe all conditions. Certainly one problem with this -
method is that it will tend to underestimate forecast errors, especially in data-
sparse areas, because the analysis uses the forecast as a background field. An
attempt was made to allow for this with a simple multiplier. We may also suppose
that the error characteristics of the forecast model will at least be a function of lo-
cation, and that this approach may not assess correctly the inter-level correlations
of error.

The new C matrix, denoted by C2, was estimated by comparing the forecast
profile with the ‘true’ collocated radiosonde profile from the dependent data. The
behaviour of C derived in this way when the collocation distance is reduced is not
strong so we can be reasonably sure that forecast errors are not being seriously
overestimated. Three C matrices were obtained; C2 from all the dependent col-
location data, CW from collocations West of 14 Deg W representing an area of
relatively high forecast error and CE from collocations East of 14 Deg W, an area
of low forecast error. CE resembled the original C1 in size whereas the elements
were much larger in CW. However, the correlation of forecast errors implied by CE,
CW and C2 were very similar and generally higher than those in C1.
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3.2 C: Simulations

The result C2¢ W(C1), is shown in figure 1. Compared with C1¢W(C1) it is
apparent that even with the wrong operator, guess errors as described by C2 are
easier to correct in the retrieval (at most levels) than those described by C1. Using
the correct estimator, C20W(C2), the result is still better but only markedly so
near the surface and above 400 mb. The C2 guess is easier to improve upon than
C1 because the errors are more strongly correlated between levels. Measurements
are able to ‘see’ errors that are highly correlated over a vertical range comparable
to, or greater than, the weighting function width.

A second experiment was done with matrices CW and CE and the simulation
suggested there is no advantage in such a stratification. Again the reason appears
to be the similarity of the error correlations in the two areas. If there are areas
or times where the forecast has significantly different error correlations then there
may be scope for further improvement.

3.3 C: Real data

The result with real data equivalent to the first simulation is given in figure 2
showing, following the notation, Ind¢ W(C1) and IndO W(C2) i.e. the result of using
Ws calculated from the matrices C1 and C2 both applied to the independent data.
As in the simulation there is some gain around 1000mb and above 300mb, though
the latter is not significant below 150mb. There appears to be an increased error
near the surface (1.5m T,) which may be caused by the lack of a skin temperature
measurement in the sonde report. Notice that at all levels with C1 the FUV is close
to or greater than unity. The use of C2 at least reduces this to make it a useful
retrieval around 1000mb. The effects on humidity retrieval is, in accordance with
the simulation, negligible.

In summary, the C matrix derived from collocated radiosonde data appears
to be a better description of the guess error than C1 and improves the retrieval
accuracy. That this method of deriving C is subject to unwanted collocation errors
appears not to be a serious objection as the behaviour of C with decreasing collo-
cation distance is not strong. As expected from simulation, simple stratification by
areas of high and low forecast error is not an advantage.



4. E - MEASUREMENT ERROR CCVARIANCE
4.1 E: Derivation

The error covariance of the measurements is poorly known although we have
reasonable bounds on the diagonal elements (see Watts, 1984). Errors in different
channels are almost certainly correlated (by preprocessing, cloud—clearing proce-
dures etc.). The measurement error is taken to refer to the term (Y —Y,) and
consequently should include any random error in the radiative transfer calculations.
The original E matrix used in the scheme was diagonal implying no correlations be-
tween errors in any of the channels. The values for the diagonals were chosen to
lie between two limits, a minimum defined by the radiometric noise (very low in
HIRS channels) and a maximum determined by routine comparisons of measured
brightness temperatures and brightness temperatures calculated from collocated
radiosondes.

Essentially the same procedure was used for the new E matrix using the ra-
diosonde profiles from the dependent collocation data but the full covariance of er-
rors was derived rather than just the variances in each channel. Three E matrices
were derived because the ‘clear’ radiances are obtained through three distinct routes
namely: clear FOVs where no cloud is detected, FOVs where an adjacent FOV has
been used to estimate the clear radiances (N* method), and FOVs where cloud
conditions preclude the N* method and the HIRS brightness temperatures are ob-
tained by regression on MSU data (for details see Eyre and Watts 1987). The
E matrices thus derived have different characteristics both in the size of the ele-
ments and the correlations. The clear E is most like the diagonal E originally used
with low off-diagonal values. The N* E has larger off-diagonals with some strong
negative correlations. Strongest correlations (up to 0.5) are found for E in the HIRS
estimated from MSU.

4.2 E: Simulations

A sample simulation result, that for the Ep,, (HIRS-MSU regression), is
shown in figure 3. The three results shown are,

e solid line; E'd.-“OW(Ed.-a,) i.e. our originally assumed expected error,

e dashed line; Evnyy OW (E4iqq) i.e. what we may expect when the diagonal E is
used on real data and

o dotted line; Epmyy OW (Em,u) representing the best we may expect given our
best estimate of the measurement error characteristics.

403



The detrimental effect of using Eg4iqy on MSU-regression data is substantial
throughout the profile, and affects both temperature and humidity. A smaller effect
is found for ‘clear’ and N* cases. In most cases the accuracy of the profile is mostly
restored when the correct E is used though there is always some loss because the
non-zero correlations in the new E matrices imply less information. Interestingly,
the size of effect is much larger than found with the C matrix simulations and is
actually capable of pushing the FUV up to and over 1.0 which is what is found
with the original routine scheme. Use of the correct E reduces this to =~ 0.8 or less
representing a useful retrieval.

4.3 E: Real data

Results analogous to the simulations just described but using the real indepen-
dent data were obtained and the sample MSU-regression shown in figure 4. Here
the three lines are,

o solid; IndOW (E4;44,C1),
e dashed; IndOW (Egiqag,C2) and
e dotted; IndOW (Em,y, C2).

In this case the using the new E much reduces the retrieval error in temperature
and significantly reduces it in humidity. In temperature the FUV reduction is a
0.25 at maximum decreasing to 0.05 at the tropopause. More importantly, the FUV
is reduced to less than 1.0 and, considering the large proportion of soundings that
this route provides (~ 80%), this represents a considerable improvement.

In the clear cases for temperature retrieval any change was small (0.1 or 0.2
FUV) but positive. In the humidity the gain was larger though still not close to
the simulated effect. With N*, more gain was made at most levels in temperature
though far less than the simulations suggested. The effect on humidity was as in
the clear case.

In summary, the new E matrices are substantially different from the original
diagonal E and differ also according to the cloud—learing route used. The simulated
effect of these E matrices is large and, at least in the case of MSU-regression FOVs,
borne out in real retrievals. This case, because of the large proportion of soundings
it constitutes, is the most important. For clears and N*s the effect is smaller than
simulated though still positive and useful. The relatively small numbers of these
cases available when generating the E matrices may mean the estimates are not
close to the best possible and we feel that a larger impact, in line with that made
on the MSU-regression FOVs, should be possible.
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5. K - INCREMENTAL WEIGHTING FUNCTIONS
5.1 K: Derivation

The original K matrix was the mean of the incremental weighting functions
calculated for 100 randomly selected mid-latitude profiles. The standard deviation
about this mean is found to be fairly high (5-10% of the mean value), i.e. there
is a significant dependency on the profile - the problem is non-linear. In order
that our model be correct, K should be evaluated at the true profile or, this being
impossible, at the guess profile, K,. W would then be calculated using K,. This
procedure would be computationally expensive and would only be justified if the
retrieval were found to be relatively sensitive to the exact value of K.

The new K was obtained by raﬁdomly extracting a profile from the mid-
latitude set. This is not an improved K of course but it allows us to gauge the
sensitivity to this part of the model.

5.2 K: Simulations

Equation 4 is derived on the basis that the retrieval can be written;

(X —Xo) = W.(Y - Yo) = WK'.(X¢ — Xo) + Wee (5)

Where X is the true profile and ¢ is a measurement noise vector. In practise
the guess brightness temperatures are calculated with a full radiative transfer rou-
tine using -approximately the correct physics, the measurements by definition use
the correct physics. We may use K’ to simulate the difference between the true
atmosphere and the linearised model, K, used in W.

The usual third simulation KW (K’) was not done because of the symmetry
of the problem; the result of K’OW(K") should be approximately KOW (K). Five
cases were tried but since the results were very similar only one is shown here in
figure 5. The temperature retrieval is moderately affected in both cases with 0.05-
0.1 K increase in error or 0.05 FUV throughout the profile. The dramatic effect
is in the humidity retrieval which is degraded typically by 5-10% relative humidity
or up to 0.4 FUV. It demonstrates the non-linearity of constituent retrieval; K is
strongly dependent on the humidity part of the profile for water vapour channels.

5.3 K: Real data

It appears necessary to calculate K and therefore W at the true profile if
the humidity retrieval is to be anywhere near the optimum result. This is clearly
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impossible in practise and the best that can be done is to evaluate K at X,. This
approach, however, is tending towards a fully non-linear scheme which is planned
for the next generation of retrieval schemes and beyond the scope of this study.
More in keeping with the approach adopted here is to see if there is some simple ad
hoc stratification that provides a K closer to the true value than the climatological
one used currently. Most of the non-linearity of the problem arises from humidity
profile and, because a high temperature indicates a high absolute humidity, we
stratified K according to temperature. The effect of using this stratification on
the independent real data set is not shown but was almost totally negligible. It
is possible that the collocated radiosonde humidity is not a good ground truth for
testing retrievals against but a substantial effect was seen with the E changes. It
therefore appears that a simple stratification is not adequate and a full on-line
calculation of K may be required.

6.  CONCLUSIONS

Significant improvements can be made to the performance of the retrieval
scheme by using error covariances that are estimated from real data. A guess error
covariance was calculated from forecast profiles and collocated radiosondes and was
found to give results broadly in agreement with simulations; improvements around
1000 mb and above 300 mb. Also in agreement with simulations, stratification into
high and low error forecast areas proved not to be profitable. The effect of more
realistic measurement error covariances was more marked, probably because the
original (diagonal) estimate was so crude. Stratification into cloud—clearing routes
was found to be necessary. The gain for clear and partly cloudy FOVs did not
match the simulated effect and we feel there is perhaps some statistical problem re-
maining here. Attempts at simple stratification of the K matrix proved useless, and
improvement here awaits further investigation in fully non-linear retrieval schemes.

The new C and E matrices have been adopted by the routine scheme and work
will continue on their refinement, especially the estimation of C since it is probable
that the forecast guess will remain central to routine processing of sounding data
in the Met Office for the foreseeable future.
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