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1. Introduction

Nowadays it is generally recognized as very important the ability of measuring the infrared
emission spectrum of the earth with infrared Fourier spectrometers for retrieving temperature, hu-
midity and other parameters of atmosphere and surface. The multiplex and throughput advantages
of interferometers make it possible to perform radiometrically precise observations at a much higher
spectral resolution than that of current filter radiometers. As a net result, the use of interferometers
would make it possible to improve the vertical resolution in troposphere and lower stratosphere by
at least a factor 2 over that of current temperature profiling radiometers (Revercomb et al. 1988).

Although the radiance spectrum is obtained in principle by a Fourier transform of the inter-
ferogram (i.e., the output of an interferometer), various factors intervene to make the recovered
spectrum an imperfect representation of the true spectrum. The most important ones are: a)
aperture effect; b) tilt and aberrations:; c) phase and compensation; d) truncation; e) noise.

Generally the first two sources of error can be corrected by a suitable design of the hardware,
whereas phase and compensation errors can be eliminated, in principle, by measuring two-sided
interferograms. Finally, truncation errors and noise are usually handled by software: apodization
(truncation error) and filtering (noise). This paper is mostly devoted to the latter two types of
error.

As it is well known, the techniques presently used for reconstructing the spectrum are in the
large majority of cases purely digital, and operate from sampled interferograms. Only a finite num-
ber of samples corresponding to a given maximum path difference can be used for the interferogram.
As a consequence, the information beyond the truncation point goes lost and the recovered spec-
trum (Fourier transform of the inteferogram) exhibits spurious side lobes which can seriously affect
its quality. This is the truncation error. One method for overcoming this problem is to assume that
all data beyond the end point of the finite-length interferogram are zero, then choose an appropriate
window function (apodization operation) which would improve the Fourier transform. However,
with each window function the frequency resolution of one frequency component from neighboring
frequency components is poor, since the spectral density is corrupted by spurious oscillations due
to side lobes, and the covariance of the spectral estimates is large. This is not a serious problem



if the underlying spectrum is a smooth function of the frequency or wavenumber. but the problem
hecomes aciie for spectra which are the superposition of sharp. discrete lines. Such characteristics
are fonnd in the infrared emission spectrum of the earth.

As far as noise is concerned. we note that the multiplex gain is the salient feature of Fourier
spectroscopy, so that it is expected that measurement errors play a minor role. Anyway. the
interferogram of any stationary process must tend to zero as the path difference or lag becomes large.
Thus also a negligible measurement error can give place to a large noise-to-signal ratio on the last
part of the sampled interferogram. Apodization also permits to reduce the effect of measurement
errors: one usually uses weighting functions with weights decreasing to zero as the path difference
becomes large. However in the context of the mathematical theory of the Fourier transform there
is no quite a general tool which allows one to perform a quality-control of experimental data.

The main objective of this paper is to implement a scheme based on autoregressive (AR)
models, and therefore alternative to the Fourier transform, in order to:

a) recover radiance spectra from interferometric measurements without any intervening window
or apodizing function;

b) perform a quality-control of experimental data.

The paper mostly deals with the fundamentals of the technique. They rely upon the Wiener-
Khinchine theorem, the linear prediction theory and the information theory. Furthermore, the
potential advantages of the procedure in the context of remote sensing of the atmosphere are also
discussed. Examples of applications of the technique are shown using HIS data.

This paper is so organized: in section 2 we show the basic equations and relations of the
technique; section 3 deals with the potential advantages of the procedure over the usual Fourier
transform; in section 4 an application of the technique is shown using HIS data; conclusions are
taken in section 5.

2. Parametric Autoregressive Modeling Approach

9.1 BASIC RELATIONS IN FOURIER SPECTROSCOPY

Before presenting the autoregressive approach (AR-approach), we premit a brief summary of
the basic relations between interferogram and radiance spectrum. As it is well known, for an ideal
‘nterferometer the relation between interferogram and radiance spectrum is a Fourier transform:

I(z) = /-oo B(o)exp(—27ioz)do (1)

where I(z) denotes the interferogram (z is the optical path difference) and B(o) the radiance
spectrum (o is the wavenumber). Thus usually the recovery of the spectrum is achieved by taking
the inverse Fourier Transform.

In practice, the spectrum is limited to a given band:

arbitrary for o1 Lo <0

B(o) = { @

0 otherwise

and if the limits of the band (i.e., o1 and o2) satisfy the condition expressed by the sampling
theorem:
oy = h-W; W(bandwidth) = o2 — 013 h  integer (3)



and noting that the spectrum is an even function:

B(U):B(—O‘) (4
the relation berween spectrum and interferogram can be written as a cosine Fourier integral:
w
I(z) = 2/ B(o)cos(2roz)do (3)
0

where we have implicitly assumed h = 2. Furthermore, all information about the spectrum is given
by a set of discrete samples of the interferogram:

1(0),I(Az),..., I(kAz),. .. (6)

provided that the sampling interval Az satisfies the condition:

1
L — s
Az < 2(0y — 0y) (7)

Eq. (1) (or Eq. 5) is only a particular case of a general theorem: the Wiener-Khinchine
theorem which states that the relation between the covariance function and the spectrum of any
process is a Fourier transform, i.e.:

o0
C(r)= / S(o)exp(-2rior)do (8)
or for a band-limited spectrum:
w
Clir)= 2/ S(o)cos(2ror)do (9)
0

In (8) and (9) C(7) denotes the covariance function (7 is the time or spatial lag) and S(o) the
spectrum (o stands indifferently for frequency or wavenumber). Always in (9) W is the bandwidth.

The Wiener-Khinchine theorem provides the necessary link between the interferogram and the
spectrum, for an interferogram is the covariance or autocorrelation of the incident wave amplitude.
Furthermore, it enables us to use modern statistical tools which permit to recover spectra from
covariance functions (i.e., interferograms in our case).

In this paper we will consider an approach motivated by probalistic arguments. The approach
goes under several names: all-poles model, maximum entropy method (MEM), autoregressive (AR)
model. The method is a non-linear technique for estimating power spectra with improved resolution
from the covariance function. The procedure appears to have been developed independently by Burg
(1967) in some unpublished work and by Parzen (1968). Following Parzen we will use the name
“AR-approach” or AR-model and so on. In our opinion the maximum entropy property has caused
MEM to acquire a certain “cult” of popularity. One sometimes hears or reads that it gives an
intrinsecally better estimate than other methods. It is not true. In the context of the maximum
entropy formalism, it is a very difficult task to understand how and where the technique recovers
spectra with improved resolution. On the other hand, such a problem is easily handled using the
linear prediction theory which is mostly based on autoregressive processes (see section 3).



2.2 AR-SPECTRAL ESTIMATE

In force of the Wiener-Khinchine theorem. in the following we use the terms interferogram
and covariance function indifferently; both these functions will be denoted by the symbol I(z).
Furthermore. R(o) will denote the spectrum.

An autoregressive process of order p is a stochastic process whose covariance function satisfies
a difference equation of order p (Box and Jenkins, 1976):

I(ky=oI(k=1)+ax[(k=2)+ ...+ apl(k-p): k>0 (10)
where for simplicity we wrote I(kAz) = I(k), with Az the sampling interval. The spectrum is:

Ppyr /W
1= 35, a;exp(-2rijoAz) ||?

R(o) = (11)

where W denotes the Nyquist frequency (bandwidth), ¢ the imaginary unit. The unknown Pp; in
(11) and the coefficients {a1,...,a,} appearing both in (10) and (11) can be computed by solving
the following set of linear equations:

A-a=P (12)

where the matrix A is the covariance matrix (it is a Toeplitz matrix):

10)  I(1) 12) ... I
I(1) I(0) I(1) ... I(p=1)
= : : : . : (13)
I(p) I(p-1) I(p-2) ... I(1)
and
a:(l,al,...,ap)T (14)

P = (Pp41,0,...,0)T

In practice, if we have an interferogram sampled up to a maximum delay N Az we can compute
the radiance spectrum by using the above equations. Thus the technique will consist of fitting to
the measured interferogram the covariance function of an AR-model or AR-process.

However if we have a number N of data (kAz = k):

100),I(1), ..., I(k), ..., I(N) (15)

in principle we can fit to the data a number N of AR-models, that is a difference equation or an
AR-model of order 1, an AR-model of order 2, and so on up to an order N which uses all the data.
If the data are not affected by noise we can choose without any problems the order N. However in
practice the data are always affected by measurement errors so that we have the problem of finding
the AR-model which best fits to the data.

To handle such a problem we will take a parametric AR-modeling approach. This approach
involves two basic tasks. First, the appropriate model (i.e., the order p of the autoregressive process)
to be fitted to the data is identified. Second, based on the model chosen, the radiance spectrum is
obtained using the above equations. As it will be shown in the next section, such a procedure also
permits to perform a quality-control of the experimental data.



2.3 QUALITY-CONTROL OF THE DATA

The procedure requires that all possible orders po p=0,1......¥ -1, are fitted to the data.
Then the optimal order. p,,,, is selected that minimizes the quantity:

SIC(p) = Nlog(S*(p)) + 2p (16)

Here .V is the number of samples of the measured interferogram. The quantity 5%(p) will be defined
in the following. The statistic (16) belongs to a quite general class of indexes used in the context
of model identification theory (Akaike, 1974). However, we like to note that the statistic (16)is a
new, quite original, statistic among the indexes belonging to the Akaike’s class.

In order to illustrate the procedure, we start from the step of order 0. This is the most
trivial step. In fact it consists of fitting the covariance function of a white noise to the measured
interferogram. Denoting by I* the fitted covariance funfztion and by I the measured values we have:

I7(0) = I(0); I"(1)=0,...,I*(N)=0 (17)

The recovered spectrum is then the flat spectrum which has the constant value Pyo/W at each
wavenunmber; here Pyo = I(0). Also the goodness of the fit is “measured” by means of the square

of the standard error: "
1 4

§(0) = =7 2_(I"(k) - I(k))* (18)
k

=1

which begins to explain the meaning of the quantity $?(p)
As a less trivial step, we come to order 1. In such a step we fit to the data a model of order 1:

I'(k)y=anI"(k-1); k>0 (19)

where the unknown ay; is computed solving the set of linear equations (12) with p=1,ie.:

1(0) 1(1) 1Y _(Py
(I(l) 10) J\enn/ ~\ O (20)
After that, starting the difference equation (19) with I*(1) = I(1), the predicted values of the

interferogram beyond the lag 1 up to the lag N are computed on the basis of the model (19).
Finally, the square of the standard error is computed according to:

N

§(1) = —— S ((K) - I(k))? (21)
N3 ?22

For an arbitrary step of order p, p=1,...,N - 1, we fit to the data the difference equation of
order p:

I"(k) = ayp I (k - 1)+ag,,1'(k—2)+...+app1‘(k-p), k>0 (22)
where the coefficients {au,...,a,,p} are computed by solving the set of linear equations (12),
namely:
I1(0)  I(1) 1(2) i~ E (D) 1 Pot1,p
1) 10) K1) ... Ip=1)) [ e, 0 e

1) -1 Ip-2) ... 1(1) / \a, 0



Starting the difference equation (22) with:
I*(1) = (1), I"(2) = I(2)...., I“(p)=I(p) (21

we compnte the predicted values of the interferogram beyond the lag p up to the lag .V and calculare
the square of the standard error according to:

§*(p) =

N~
Ot
—

- 2 [
== 2 (8- I(E) (
k=p+1

which ends off to explain the meaning of the quantity §%(p) appearing in the expression of the
statistic SIC(p) (Eq. 16).

At this point of the analisys we want to stress that the above procedure can be implemented in
a recursive fashion. Towards this objective it is possible to use the Durbin algorithm or the Levinson
algorithm. The recursive procedure that we have implemented uses the Levinson algorithm.

Finally, we note that data are processed in a sequential way: at the step of order 0 we consider
only the sample at 0 path difference or lag, at the step of order 1 we add the information coming
from the next data in the data series of the interferogram and so on. Thus if the optimal order is
p we can conclude that the data from the lag p + 1 up to the lag N do not add any information
to the spectrum. In other words the technique can be seen as a mere procedure which permits to
perform a quality-control of the experimental data.

3 About the potential advantages of the AR-spectral estimate

As it was already pointed out, the AR-spectral estimate has the maximum entropy property.
However such a property does not add anything towards a better understanding of the capability of
the technique. Maybe a more appealing feature of the technique is that the MEM or AR estimation
(see Eq. 11) is a function of continously varying wavenumber o. There is no special significance
to specify equally spaced wavenumbers as in the Fast Fourier Transform case. However there are
many other reasons which make the technique very interesting, expecially in the context of the
remote sensing of the atmosphere. We will discuss about such a topic in the next sections.

3.1 ABOUT THE SPECTRAL RESOLUTION

We have seen that the AR-approach consists of fitting to the measured inteferogram a model
which is a difference equation of some suitable order p. In practice two general situations can occur:

1. the “true” interferogram satisfies a difference equation of order p. In such a case, we need only
p samples of the inteferogram and the value of the integral over the spectrum (i.e., I(0)) in
order to have an accurate representation of the spectrum. On the other hand using the Fourier
transform we need, at least theoretically, the full knwoledge of the interferogram, i.e., from
z =0 up to z = 00;

2. the “true” interferogram does not satisfy any difference equation. In such a case the AR-
spectral estimate does not offer any advantage upon the Fourier transform; at parity of data
both the techniques have the same resolution. Still both the techniques converge to the true
spectrum when the number of samples tends to co. However, with data affected by measure-
ment errors, the parametric AR-approach we have discussed in the section 2.3 still permits to
perform a quality-control of the experimental data.



At this stage of the discussion we note that there exists a very large class of physical phenomena
with covariance functions which admit a representation in terms of a difference equation (i.e.. in
terms of an antoregressive model). First of all we quote the class of periodic signals. Such signals
have a covariance function which reads:

y.|

I(r) = ?cos(?rraor) (26)

where A is the amplitude of the wave.

In optics Eq. (26) describes the ideal interferogram of a monochromatic wave of wavenunmber
9. If we sample such an interferogram at discrete points then samples satisfy a difference equation
of order 2:

I(k) = aI(k-1)+ a3 I(k-=2); k>0 (27)

Furthermore, the power spectrum of such signals is a é-function peaked at oy.

Another example is offered by the superposition of M monochromatic waves. The covariance
function is:

I(z) = Zy’cos(ﬁraﬂ:) (28)
J=1

where M is the number of independent wavenumbers. The spectrum of this system has §-functions
at these wavenumbers. It can be demonstrated (Serio 1989) that its discrete interferogram is
a difference equation of order 2- M. In optics such systems describe the interferogram of M
monochromatic sources.

To illustrate the very cute property of the AR-approach to fit sharp spectral features, we
consider the theoretical example of two cosine waves with wavenumbers o; = 0.1 and oy = 0.11
respectively. The ideal interferogram is:

A} A3
I(z) = ?‘ cos(2mo, ) + -2—2COS(27I’0'2.’L‘) (29)

Such an interferogram was sampled at a rate Az = 1. The samples then satisfy a difference equation
of order 4:

4
I(k) =) "a;I(k-j); k>0 (30)
i=1

where, as usual, we have written kAz = k. We note that the coefficients ay,... ,a4 depend on the
sampling interval but they do not depend on A? and A}. In principle the AR-approach would be able
to recover the correct spectrum only on the basis of four samples (and I(0) of course). Fig. 1 (on
the top) shows the AR-spectral estimate obtained using the values 1(0), I(1),1(2),1(3), I(4), while
the Fourier spectrum (Fourier transform), computed using the same data, is shown on the bottom.
The AR-method resolves the two spectral components completely, while the Fourier transform fails
completely in detecting the presence of two cosinusoidal components.

Furthermore, we do not need to limit ourself to periodic signals. There is a very large class of
aperiodic phenomena (that is systems whose covariance functions go to zero as the lag or the path
difference tends to c0). Among many others here we quote the cases described by damped cosines:

I(z) = exp(—%)cos(?raoz) (31)

Such an interferogram admits a representation in terms of a difference equation of order 2 when
sampled at a finite rate. In optics Eq. (31) describes the interferogram of a Lorentzian line.

In general we can say that the AR-spectral estimate provides an accurate representation for
underlying spectra which have sharp, discrete lines or é-functions. Such characteristics are proper
of the infrared emission spectrum of the earth or in general of emission spectra of gases. Thus the
technique could potentially be very useful in the context of remote sensing of the atmosphere.



Spec trum

%10

spec trum

AR-Spec trum

80.00

S P

A)

60.00

40.00

20.00

.00

0
=]
—(

frequency

Fourier Spectiim

8
g-
B)

8

-

8

& \

8

34

8

-

P T T | ey - Dty muencELI Y SRR

0.00 0.06 0.12 0.13 0.25 0.31 0.37 0.44 0.50
frequency

Fig. 1 - Example of two cosinus waves with frequencies
0.1 and 0.11 respectively. The figure shows
the spectrum recovered using only 4 samples
of the interferogram. A): AR-spectrum. B):
Fourier spectrum.



3.2 ABOUT THE TRUNCATION ERROR

It was already pointed out in the introduction that in practice the interferogram is truncated
at some finite value of the path difference. and therefore the loss of the informatior heyond the
maximnm delay will introduce some distortion in the spectrum. Such a problem becomes acute if
the underlying spectrum exhibits sharp features, since in the interferogram periodic signatures will
predominate and the convergence to zero is very slow.

In the context of the Fourier transform the tool to handle such a problem is apodization.
i.e., the use of window functions. However the use of window functions violates assumptions
of statistical inference; that is they assume characteristics of the data which are not known and
corrupt available data by smoothing. Furthermore apodization introduces linear dependence among
the spectral components.

On the other hand we have already seen that the AR-approach attempts to fit to the data a
difference equation of some suitable order p:

I(ky=ayI(k=1)+...+apl(k-p); k>0 (32)

Now whatever the chosen value of p may be, the equation (32) determines a certain sort of extrap-
olation of the interferogram to the lags larger than N, i.e. larger than the number of measured
data. Thus the AR-spectrum is obtained using an interferogram which goes from lag 0 up to lag
o0; that is, we do not need to apply any window function.

From a statistical point of view, the AR-method is a parametric approach to the problem of
recovering the spectrum from samples of the covariance function, whereas the Fourier transform
takes a non-paramatric approach. The parametric approach makes it possible to identify a de-
pendence model of the data and such a model determines by itself a sort of apodization of the
spectrum. However this kind of apodization uses only the available data and does not corrupt
them with exogenous mathematical functions, i.e., the window functions. As a result the technique
introduces linear dependence among the spectral components at a lower degree than procedures
which make use of the Fourier transform.

As a final remark we note that this particular extrapolation can be shown to have, among all
possible extrapolations, the maximum “entropy” in a definable information theoretic sense. Hence
the other name of the technique: maximum entropy method.

4. Application of the AR-approach to HIS data

In this section we discuss the application of the AR-procedure to HIS data (Revercomb et
al. 1988) (HIS is a shortening of High-resolution Interferometer Sounder; it is a calibrated Fourier
transform spectrometer). Fig. 2 (on the upper side) shows an HIS-interferogram in the band III
(from 600 to 1100 cm™') recorded during a flight on board ER-2 research aircraft. The interferogram
consists of 2048 samples from the lag 0 up to the maximum delay 2048 - Az = 1.815 cm. For
convenience the z-axis in Fig. 2 was drawn using Az = one unit; the actual value of the sampling
interval is Az = 1.815/2048 cm. Due to scale problems, the plot I(k) in Fig. 2 does not show
very well all the features of the measured interferogram. Anyway the interferogram exhibits its
maximum variability near the origin, i.e., in the region which goes from k = 0 to about k£ = 100.
After that there are two marked patterns in the intervals 600 < k < 780 and 1300 < k < 1550
respectively.

As a result of the quality-control analysis of such data, performed using the above discussed
parametric AR-approach, in Fig. 2 (on the lower side) we show a plot of the index SIC vs. the lag k
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or. equivalently, vs the order of the model fitted to the data. Note that there is a full correspondence
between the r-axes of the two plots shown in Fig. 2.

The curve SIC(k) exhibits a first minimum at k ~ 100, where the interferogram ends off
its maximum variability. A deeper minimum is located at the end of the next marked pattern
(k= 770). Another deep minimum is located at the end of the last pattern visible in Fig. 2 and
finally the deepest minimum appears at the end of the interferogram. Thus we can conclude that
all the samples of the interferogram provide useful information about the underlying spectrum.

Fig. 3a shows the AR-spectrum obtained using all the data, while Fig. 3b shows the Fourier
spectrum. The strong line structure is quite visible. As a comparison the next Fig. 4 shows the
percentage difference between the AR and Fourier spectrum:

DIFF% = M.
Rp

100 (33)
where R4p and Rp denote the AR-spectrum and the Fourier spectrum respectively. Also the
Fourier spectrum was obtained without any intervening window function. The two spectra agree
very well except in the region characterized by a strong line structure.

However we feel obliged to warn the reader that the example above does not permit to infer
anything about the superiority of the AR-approach. The problem is that the interferogram we
used was obtained (see Revercomb et al., 1988): first by taking the Fourier transform of the
uncalibrated interferogram (i.e., the direct output of the HIS ER-2 instrument) to produce the
uncalibrated spectrum; second by using the procedure implemented by Revercomb et al. (1988) to
produce the calibrated spectrum; third by taking the Fourier transform of the calibrated spectrum
to finally produce the interferogram (calibrated) shown in Fig. 2. The double Fourier transform
involved in such operations corrupts inevitably the original information in the interferogram. Thus
we do not expect that the interferogram we actually possess is able to provide an useful test to
check the superiority of the AR-approach. It is only possible to conclude that the technique works;
how well it works is a problem that we are at present analysing by using simulated interferograms
generated by a line-by-line radiative code (HARTcode, Miskolczi et al, 1988). Moreover, we are
going to apply to interferometric data a non parametric technique already developed (Amato and
Serio, 1989), which allows one to obtain maximum entropy solutions when data are affected by
measurement errors.

5. Conclusions

The authors have implemented a procedure based on AR-models which permits:

a) to recover radiance spectra from interferometric measurements without any exogenous window
or apodizing function;

b) to perform a quality-control of the experimental data.

The technique relies on the Winer-Khinchine theorem, on the linear prediction theory and
on the information theory. Based on the fundamentals of the procedure, we conclude that AR-
models can play a relevant role to improve the spectral quality of spectra recovered from measured
interferograms. However much work must still be done in order to show if the potential advantages
of the technique may become real advantages in the context of remote sensing of the atmosphere.
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Anyway we hope that this paper will open a fruitful discussion about data handling techniques
alternate to Fourier transform.
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