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1. INTRODUCTION

It is recognized that interferometers can give radiance estimates in the atmosphere at
a much higher spectral resolution than that of current filter radiometers. The consequences
can be the improvement of the retrieval of temperature and humidity profiles from radiance
data as far as vertical resolution is concerned.
Some papers appeared in the literature concerning the optimization of the design of inter-
ferometers, as far as both the experimental equipment and the data to be measured are
concerned (see, e.g., Revercomb et al., 1988, Amato et al., 1991). In particular much is
known about the length of the measured interferogram. However some work has to be done
in order to process the measured interferogram in an optimal way from the mathematical
point of view. In fact some current techniques do not take account of the experimental
error affecting the interferogram properly: they are based on the use of a spectral window
whose size is fixed and in particular does not fit the experimental error (see Jenkins and
Watts, 1968 for a review). In addition, other techniques, non linear in general, loose the
nice computational properties of the original problem, namely the possibility to use FF'T,
and then do not seem to be advantageous for real-time applications (see, e.g., Amato et
al., 1991).
Aim of the present paper is to introduce an optimal mathematical technique for re-
trieving the spectrum from an interferogram with the following features:
a) involve the use of FFT from a computational point of view, so that its speed can allow
real-time applications with large quantities of data;
b) take account of the experimental error affecting the interferogram, in the sense that
the amount of error present is recognized and the right amount of smoothing is applied;
c) must generate a final algorithm; this means that any step of the procedure is to be
performed by the algorithm, without any external intervention of the researcher, so
to give a true objective mathematical technique.
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The algorithm proposed is entirely based on the work by Amato and Serio, 1991.
2. MATHEMATICAL FRAMEWORK

As far as Fourier spectroscopy is concerned, the relationship which links the spectrum,
R, to the measured interferogram, I, is well known to be a cosine Fourier transform:

Iy = %/{;T R(t)cos (k—;i) dt (1)

with T being the maximum wavenumber.

The problem of retrieving the spectrum from the measured interferogram is of course an
inverse problem and it is well known that such problems are ill-posed and then give rise to
a lot of troubles in finding the solution. In particular, error affecting the data of the inverse
problem propagate highly amplified onto the retrieved solution. However the situation of
interferometry is luckily different, since the inverse cosine Fourier transform belongs to a
particular class of inverse problems for which the propagation of error is well behaved: let
o1 denote the experimental error affecting the interferogram and o g the error affecting the
retrieved spectrum; then it can be easily shown that

lorllz: = llorlle (2)

Eq. (2) shows that no amplification of the error occurs when solving the inverse problem]L
and then no particular care could be taken from the mathematical point of view. How-
ever, the very nature of the physical problem determines one more trouble: in fact the
astonishing high number of molecular transactions in atmosphere makes that a very long
interferogram is needed in order to well represent the spectrum; then the overall error af-
fecting the interferogram increases and Eq. (2) says that the overall error on the retrieved
spectrum increases as well, even if not amplified. For this reason it makes sense to find
mathematical methods such that the solution of the inverse problem satisfies

lorlizz < llozlle (3)

Then all tools existing for solving inverse problems can be resorted also for the interfer-
ometry problem.

3. REGULARIZATION

In order to simplify the notation, we shall previously make the change of variable
f =t/(2T), so that the equation to be solved becomes

Li=2 / " R(f) cos (2knf) df (a)

The whole following discussion equally applies to Eq. (1), provided that suitable algebraic
manipulations are made.

>

TTo be more precise, the ill-posed character of the problem depends on the norm chosen,
but Eq. (2) is true for norms of practical interest in interferometry.

18




The most consolidated and effective technique for solving inverse problems is the well
known Regularization. In this ambit the problem of the inverse cosine Fourier transform
is written as:

.

1 m-—1

1 2
ngnﬁ, L=— z (Ik—2/0 R(f)cos2k7rfdf) + AS(R) (5)

m
k=0

where

m is the length of the interferogram sample;

S is a stabilizing functional;

A is the regularization parameter, A > 0.
The role of the stabilizing functional consists in smoothing the oscillations of the solution
due to errors on the interferogram. In general it is assumed

d?R(f)
sw=2 [ |22] ©
where p > 0.
If we look for the solution in the form
m-—1
R(f)=2 (co +2 ) cxcos (2km f)) (7)
=1

problem (5) is written as

2
' 1 m-—1 l m-—1 .
com,gl.. : = = Z <Ik - / (co + 2 Z Ci cosme) cosZwkfdf) +

k=0 =1
T gp
offid

For the sake of brevity, in the following we shall omit the tedious algebraic manipulations
for finding the solution of problem (8). It can be shown that

m-—1 2
co+2 Z c; cos 27rif] df (8)

=1

for the case p = 0 the solution is

o _ b
. 14+2\m
: (9)
R
T 14+40m’ T
for the case p > 0 the solution is
{ C(P) .~ IO
() _ Iy S o (10)
i ~ 14 (2km)2PAm’ B
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In Amato and Serio, 1991 it is proved that this method is optimal, as far as convergence
to the true spectrum is concerned.

4. CHOICE OF THE REGULARIZATION PARAMETER

Egs. (9) and (10) give a family of solutions depending on the regularization param-
eter. As in all inverse problems, its choice is quite often crictical, in the sense that very
small variations of the parameter can give quite different solutions. Moreover, it is es-
tremely important to have an objective choice—the parameter is uniquely determined by
an algorithm—especially in the case of real-time and in-situ computations.

To our knowledge, the only effective criterion for the choice of the regularization
parameter when variance of the input data is unknown is the Generalized Cross Validation
criterion (Wahba, 1977). If Xf = d is the general integral equation in discretized form
and

minf, L£=—|Xf—d|*+)TSf
; m = -

is the functional to be minimized, the GCV criterion consists in minimizing the following
functional:

LI - AN)d|I*
(LTx (1 - A(N))®

minV(), V(3=

with A()) = X(XTX 4+ mAZ) ' XxT.
For the problem of interferometry it results

case p = 0:
2110 0
0 4 0
X=1 and Y = :
0 0 4
so that )
e T (1) soond 0
AQ)) = 0 1+4mA 0
0 0 1+:m)‘
and

2 2
m—1
(1 - 1+21mA) I+ (1 T 1+im1\) k=1 I;
2
-1
[1 - TR (- ﬁzl—m—x)]

By algebraic manipulations, it can be shown that Eq. (11) can be written in a simpler
way as

Vo(A) =m (11)

AN 4mAYI2 + 4(1 4+ 2mA)? Sr 12

(2m +4m?)\ — 1)2 (12)
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The minimum value of V;() is obtained for

(=)<l 17

A= (13)
m—1
4m (mlg ¥ Zk:o k)
case p > 0:
cf,p) = I (see Eq. (10)), so that
(2m)?P 0 0
0 (4m)?? 0
0 0 cer (2(m —2)m)?P
and then ;
TTE T mr 0 0
T W 0
AQ) = 1+(dm)2P mA
0 0 1+(2(m—11)1r)2PmA
so that ,
1233 ;cn—ll - (2km)?? I?
m = +(2km)2PmA k
V() = : m_g : ) 5 (11)
(1 T m Z:k=l 14+(2km) PmA)
The minimum value of V() is reached for
m—1 m-—1 m—1 m-—1
BN G- B Y di=0 (13)
k=1 k=1 k=1 k=1

where
(2km)?P

(2km)?PmA + 1

dy =

5. NUMERICAL EXAMPLE

Before giving a brief example concerning the proposed technique, we note that the-
oretically the order of differentiation of the stabilizing functional S can be any integral
p > 0. However, if we write Eq. (10) in the equivalent form

il (2
am S (B - I7)

(16)
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it results in general A < 0 which is not allowed. This means that the GCV criterion is not
effective in the case p = 0. Moreover, no theoretical reason can be invoked in preferring
any priori value of p > 0 for the stabilizing functional; however numerical experiments on
this and other inverse problems show that p = 2 represents a good choice in general.

Summarizing, the procedure for finding the radiance spectrum from the interferogram,
taking account of the experimental error, goes through the following steps:

a) choose the stabilizing functional by fixing p = 2

b) find the optimal regularization parameter A by solving the non linear equation (15);

¢) calculate the regularized interferogram (that is the Fourier coefficients of the radiance

function smoothed by the proper amount of regularization) by means of Eq. (10);

d) finally calculate the radiance from the regularized interferogram by usual FFT tools.
In this section we present an example based on a sample spectrum obtained by FASCOD2.
The interferogram was calculated on 2049 points. Two different cases are considered: in
the first one no error corrupts the simulated interferogram, while in the second one a
random noise is simulated, following a normal distribution with variance, o2, constant all
over the interferogram (\/;7 = 31, corresponding to ratio signal/noise of about 5000).

In the first case the Generalized Cross Validation criterion gives an optimal value
A = 0; the corresponding retrieved spectrum is equal to the not regularized one and no
smoothing is provided by regularization. In this example the GCV criterion correctly
recognizes that no error affects the interferogram.

In the second case the Generalized Cross Validation criterion gives a value A = 0.268-
10~!8 and then regularization is effective. The retrieved spectrum is 30% better than the

not regularized one (A = 0). Figs. 1 and 2 show the true spectrum and spectra retrieved
with A = 0 (no regularization) and A = 0.268 - 10~® (given by GCV), respectively.
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Fig. 1: True spectrum (cor;‘tinuous- line) and spectrum retrieved without regular-
ization (dashed line) for the case 5000:1 S/N ratio.

22




(K)

Radiance
2:40

200.

1 T T I T T
S60. 640. 720. 800. 880. 960. 1040. 1120. 1200.

wavenumber (cm*x—1)

Fig. 2: True spectrum (continuous line) and spectrum retrieved by regularization
with A chosen by GCV (dashed line) for the case 5000:1 S/N ratio.

6. CONCLUSIONS

The present paper dealt with a new method for retrieving radiance from interferometry
data based on optimal mathematical techniques. Particular attention is devoted to devise
an algoritm which is both very fast from a computational point of view and completely
objective, in the sense that no parameter has to be tailored by the researcher in order
to work. The technique heavy uses FFT, so that its speed of execution can be strongly
increased by using devoted chips. A first simple example is given which shows the use and
effectiveness of the Generalized Cross Validation criterion. More research is needed in order
to analyze the performance of the technique when error and length of the interferogram
are increased.
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