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1. INTRODUCTION

High resolution infrared sounders for measuring the Earth emission spectrum from satellite

are now recognized fundamental for improving accuracy and vertical resolution of the
retrieved atmospheric structure. Research is presently under development concerning the
use of interferometer spectrometers (e.g. IASI) and the related processing of interferogram
signals. In the present communication the technique which is under development at our
research centre is shown. Examples are illustrated by simulating synthetic interferogram
signals corresponding to spectra with a spectral resolution of 0.25 cm™!. Only the spectral
range 600+ 800 cm ™! has been considered and only the problem of retrieving temperature
profiles has been fully analysed. Aim of the present paper is mostly to evaluate the effect of
apodization or lag windows upon the final product, i.e., the temperature profiles. The tool
of apodization is briefly summarized in section 2, while section 3 deals with the inversion

algorithm which has been implemented and section 4 illustrates the results.

2. THE TOOL OF APODIZATION

It is commonly believed that to achieve the objective of retrieving temperature profiles

with an‘accuracy of 1 degree, high resolution infrared radiance measurements (spectral
resolution of about 0.25 < 0.5 em™!) are needed with a radiometric accuracy of about
0.25 K at a scene temperature of about 260-270 degrees. This goal could be difficult
to reach in the carbon dioxide absorption band at 15 um, hence the supposedly need of
apodization. Apodization is a tool to smooth spectra and it is relevant to spectra obtained
by Fourier Transform Spectrometers or Interferometers. With reference to the case of a
one-sided interferogram signal, which is the quantity measured by a FTS, we have that
the relation between the interferogram signal and the spectrum is expressed by a cosine

Fourier Transform:

N-1
R(o) =2A (I(O) +2)° w,J(k)cos(Qn’akA)) (1)

k=1

where
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I(k) : denotes the sampled interferogram signal

A : is the sampling interval in the interferogram domain;
R(o) : denotes the radiance at the wavenumber o;

N : indicates the number of interferogram samples;

wy : denotes the lag window function.

In the Fourier transform above the interferogram samples are multiplied by weights (the
wy’s) decreasing to zero at the end of the record. This practice is commonly referred to
as windowing and has the effect of suppressing part of the noise affecting the data points.

Common windows are the rectangular window:

(2)

{ 1 0<k<N-1
WE = b
0 otherwise

which is equivalent to no smoothing, and the Triangular, Fejer or Bartlett window:

1=k 0 b g N—3
wk:{ » Tt |

0 otherwise

(3)

In the spectral domain the windowing operation is equivalent to convolve the true spec-

trum, Ry(o), with the Fourier Transform of the window function, W(o):

R(o) = /°° Ri(0,)W (o — 0,)do, (4)

—00

However, in practice, an additive noise term, €(o), has to be considered which comes from

the noise affecting the interferogram:
R(o) = / Ri(0,)W (o — 0,)do, + (o) (5)
cOO

Since the Fourier transform is a linear operation, we have that the noise term transforms

as the interferogram function does, i.e.:

N-1
€(o) =2A (77(0) +2 z ww(k)cos(ZnakA)) (6)
k=1
where 7 denotes the measurument error affecting the interferogram signal. Following the

common assumption of uncorrelated, Gaussian, measurement errors:

2

B ={" @
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(E[-] denoting expectation value), the variance affecting the spectral ordinates can be easily

computed
N-1
E [é(0)] = 4A2012] (1 +4 Z wi cosz(ZnakA)> (8)
k=1
In the same way we can compute the covariance matrix V;; of the spectral estimates
N-1
Vij = Ele(0i)e(0;)] = 4A%0} <1 +4 Z w? cos(27ra,~kA)cos(27rajkA)) (9)
k=1

In general, we have that, compared with the rectangular window, other windows reduce
the variance, that is the diagonal terms of the covariance matrix, while increasing the
off-diagonal values. That is, windowing introduces linear dependence in the data points.
Furthermore, classic windowing is empirical in principle. With any window we cannot
optimize the transfer of the noise power from the diagonal terms to the off-diagonal ones,

which is not good, in general.

2.1 The ASE smoothing of spectra.
For this reason we have developed an optimal procedure (ASE; Amato and Serio 1991; V.

Cuomo et al 1993) which yields adaptive window functions. The analytical form of such
window functions is:

_{(1+(27rk)4AN)“; 0<k<N-1

0 otherwise

(10)

where N is always the number of interferogram samples and A is trade-off parameter whose
optimal values is found by using the General Cross Validation (GCV) criterion ( Wahba
1977; Amato and Serio 1991; V. Cuomo et al 1993)).

3. THE INVERSION ALGORITHM

To evaluate the impact of apodization over the inversion products, we have developed a

straightforward but robust inversion scheme. A Newton-Raphson scheme has been used
where the inverse problem is linearized by Taylor expanding the signal, R(o;T(z)), with

respect to the temperature profile:

* OR(0;T(2))

Bles(z)) = Rla; Tola)) Hfl oy

(T(z2) — To(2))dz (11)
T(2)=T (2)

Here T, (2) is a suitable first guess profile, and R(c; T(z)) is the radiance at the wavenumber

o, the notation emphasizes that the radiance R is a function of the temperature profile.
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For simplicity only variations in the temperature profile have been considered. Further-
more, for computation the intregral (11) has been separated in 17 layers, 1 km thick up to
ten kilometers, and with varying thicknesses up to 100 km. Once the inverse problem has

been linearized it can be put in the usual form
y = Ax (12)

where x is the unknown profile (M-dimensional vector), y is a vector of quantities (radi-
ances) to be measured (N-dimensional vector) and A is an N - M matrix. We consider N

greater than M and therefore we get a solution, X, by Least Square:
%= (ATV'4)" ATV-1y (13)

where V denotes the input matrix covariance and V(%) the output covariance matrix; the
suffix T denotes transpose and —1 inverse matrix. Furthermore, the output covariance
matrix, V(X), reads:
" _1 4\ -1
V(%) =02 (ATV'A) (14)

4. ASSESSING THE IMPACT OF APODIZATION
To assess the impact of apodization on the retrievals the following exercise has been carried

out. Using the FASCOD2 code (which was used to do all the line-by-line calculations),
1

the interferogram corresponding to the spectral region 600-800 crn™" was obtained for the
U.S. Standard Atmosphere. The resolution was 0.25 crn ™! which corresponds to the design
unapodized resolution of the IASI interferometer. In order to have a suitable statistics to
compute the r.m.s. error of the retrievals, the inteferogram signal was corrupted with
one thousand different sets of noise term so that 1000 noisy inteferogram signals were
obtained. Each corrupted interferogram was FFT transformed, and in this operation three
different windows were considered: the rectangular window, the Bartlett one, and the
ASE window. Of course, for each window the radiative transfer equation was convolved
accordingly. Fig. 1 show the Brightness Temperature (BT) spectrum corresponding to the
U.S. standard atmosphere (no external noise added) which was used in our simulations.
Although different signal-to-noise ratios were simulated, for the sake of brevity, only the
case corresponding to a signal-to-noise ratio of 5000:1 at zero delay in the interferogram
domain will be shown. Fig. 2 shows how the error propagates to the BT’s in the spectral
domain (unapodized case). This case is very interesting, since, on average, the r.m.s error of
the spectral estimates is about 0.47 K. At this level of the error, apodization is considered
to be important. Convolving the noisy interferograms with the different windows we had

the following results.

>y N
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Fig. 1 Brightness Temperature spectrum for the U.S. standard atmosphere in the spectral
region 600-800 cm~'. The resolution is 0.25 em™!.
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Fig. 2 Root mean square error affecting the spectral ordinates (unapodized case) assuming

a constant error (signal-to-noise ratio equal to 5000:1 at zero delay) affecting the

interferogram signal.
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Fig. 3 Root mean square error of the temperature profile obtained by smoothing the spectral
estimates before applying the inversion algorithm. Dashed line: Bartlett window; solid
line: ASE window; dotted line: rectangular window (unapodized case). Note that ASE

and rectangular smoothing give the same result.
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Fig. 4 As figure 3, but using the correct input covariance matrix for each window. Note that

ASE and rectangular smoothing produce the same result.
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Fig. 5 Comparison between the ASE window (dashed line) the Bartlett window and the
rectangular one.
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The Bartlett window realized the best reduction of the variance of the spectral estimates,
since, on average, the r.m.s. error affecting the spectral ordinates was 0.27 K against 0.47
K (unapodized case). The equivalent figure for ASE was 0.40 K. Yet, coming to the result
of the inversion process we see (Fig. 3) that the Bartlett window gives the worst r.m.s
error of the retrievals (i.e. temperature profile). Furthermore, the ASE smoothing gives the
same results as the ones obtained by using the rectangular window. For the case illustrated
in Fig. 3, the input covariance matrix was set equal to the identity matrix, therefore it
could be argued that better results might be obtained by using the correct input covariance
matrix (9). However, using the correct covariance matrix for each window, the Bartlett
window gets worse and worse (Fig. 4). This behaviour deserves a bit of further analysis.
We have computed the conditioning number of the resolving matrix and, as a result, we
have that it becomes higher and higher passing from the covariance matrix equal to the
identity matrix to the correct covariance matrix. In other words.the introduction of the
covariance matrix makes worse the conditioning of the problem.

To sum up, we can conclude that:

1. classic apodization has a negative effect on the inversion process;
2. ASE and rectangular windowing give equivalent results as far as the r.m.s. error of

the retrievals is concerned;

It should be noted that item 2 is not a trivial result, in the sense that the ASE window and
the rectangular one do not coincide (Fig. 5). Thus, the ASE windows are the only that,
while retaining the properties of the rectangular window (off-diagonal terms vanishing in
the covariance matrix), realize a reduction of the variance of the spectral estimates.
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