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1. INTRODUCTION

Many schemes for retrieving temperature profiles from TOVS radiances, such as
the one used by the National Environmental Satellite, Data and Information
Service (NESDIS) (Fleming et. al., 1986), use a physical or physical statistical
approach. This type of approach depends on comparison between observed radiances
and values computed from assumed atmosphere temperature and moisture profiles.
Generally, operational retrieval schemes such as that of NESDIS apply empirical
corrections for non-identifiable systematic errors in the radiative transfer
equations. However, it is desirable to remove identifiable systematic errors
physically rather than empirically where possible.

A previous simulation of TOVS brightness temperatures in the 15um CO, band
(Turner, 1992) indicates that the 30 ppmv change in CO, mixing ratios observed
over the past 17 years may be associated with brightness temperature changes as
large as one degree. This result indicates that ignoring long term changes in
CO, amounts may lead to systematic errors in TOVS radiative transfer models large
enough to be of concern in applications such as the assimilation of TOVS
radiances into NWP models.

A simple correction term is proposed that could be applied to the HIRS
transmittance calculated by the NESDIS fast transmittance model (Weinreb et. al.,
1981) to correct for this systematic error.

2ol THEORETICAL BASIS FOR THE CORRECTION TERM
For a given temperature-moisture profile the top of the atmosphere (TOA)

radiance observed by a satellite is simulated by:

Ps = 7
RT(p,) =R (P,) T(p,:0) - [ B(p/) - SR -ap’ @
0

The TOA radiance is the sum of the attenuated radiation from a surface at Pgr
Plus the attenuated emissions from the atmosphere. Equation (1) assumes that
spectrally averaged (mean) transmittances can be used to derive the mean
radiance. As this study is focused on sensitivity to CO,, the T's used in this
study consist only of the uniformly mixed gases component (CO,, N,0, CO, CH,, O,
and N,); the O3 and the H,0 components are excluded.

A possible form for a CO, correction term can be determined by writing the
monochromatic transmission function as;

T(D,q@) = e~(THW

P P
where H=M-fk(v,p’,T(p))'dp’ & A=M-E fqi°ki(0,p’,T(p))'dp’
9o (o) 9o (e}

g'H is the optical depth contribution due to Co,, A is the contribution due to
the other uniformly mixed gases, q is the mass mixing ratio of CO,, k is the
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th

absorption coefficient of CO,, q; is the mass mixing ratio of the i'" absorber,

excluding CO,, k; th apsorber, T is the

temperature (a function of p), 6 is the satellite zenith angle, and g, the

is the absorption coefficient of the i

gravitational acceleration.

If one assumes that the CO, mixing ratio varies, but that it is still constant
with pressure, a form of a correction term that may be applied to a reference
transmittance, To(p,q), can be found, iej;

1+B- (q-qp) - H
) , p THA (2)

T(p,q) =7, (P,

The term B-(q-qo) represents an adjustment to 7y, the transmittance at g, in
order to approximate the transmittance at g. It should be noted that B is not
a simple number, but a intricate function of pressure, temperature and the
absorption coefficients of all the absorbers involved, including CO,. Although
B is not constant, it can be shown that for practical purposes it can be
approximated by a single constant for each channel.

It would be desirable that B be temperature independent, but this not obvious
due to the implicit temperature dependencies of H and A. However intuitively one
would expect the dependency on temperature to be weak since presumably the ratio
of H and gy'H+A will cancel out most of the effect of any temperature
dependencies. Furthermore, P is a second order correction term that only
accounts for the change in the temperature dependence of the transmittance with
q since 7;, already includes the effect of T(p) and 6 at qy- It is expected that
B should have no dependency on zenith angle since the sec(8) factor in H and
gy H+A cancel out.

Equation (2) applies to monochromatic transmittances. Nevertheless the use
of average transmittances in place of the monochromatic transmittances will not
change,%he form of (2), just the value of B. A dependency on the zenith angle

is irtroduced due to the wavenumber averaging, however it is expected to be weak.

2.2 Calculation of 7

The GENLN2 line-by-line (LBL) radiative transfer model (Edwards, 1992) is used
to evaluate the required T(p,q)‘s. The LBL model utilizes the HITRAN86 spectral
database (Rothman et. al., 1987). 7(p,q) is calculated at 0.002 (cm'1)
resolution assuming a heterogenous path defined by a string of homogenous cells
whose boundaries are defined by the standard NESDIS pressure levels. The cell
absorber amounts are determined by the U.S. standard atmosphere and the mixing
ratios of the uniformly mixed absorbers. The T(p,q)’s are formed by integrating
over the NOAA-10 HIRS response functions from Planet (1988).

The values of T(p,q) for values of CO, mixing ratio from 320 ppmv to 380 ppmv
in 10 ppmv increments were calculated using GENLN2. The reference value q; is
set as 330 ppmv and the satellite zenith angle is set to 0°. Unless otherwise
noted,‘the temperature and water vapour profiles used were from the U.S. standard

atmosphere.
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2.3 Determination of B

Rearrangement of (2) leads to an expression linear in (a-qg) , ie;

/ I e IR s e T 3
a’(p,q) (1og(?o(p,q)) 1) B-(a-q,) (3)

The character of a’(p,q) may be examined by plotting it against pressure as
in figure 1.

Figure 1 illustrates the values of a’(p,q) for HIRS 6! as a function of
pressure and CO, mixing ratio. The weighting function is superimposed. As one
would expect a’ becomes larger and less constant with pressure as the amount of
CO, deviates away from 330 ppmv. The values of a’ over that region of the
atmosphere where the greatest contribution of upwelling radiation originates (ie
weighting function values greater than half the peak value) are relatively
constant with pressure for smaller deviations from gy This implies that it may
be possible to assign a single value of a for each a’(p) curve.

An average value for each a’(p) curve, denoted as a, is determined by
weighting a’(p) with the channel’s weightiﬁg function, ie:

d?(P:Q) P .dl
LTy f AiedteT a(p,q) og (p) i
dt(p,q)
fldlog(p Idlog(p)

The vertical lines in figure 1 represent the values of a for each g as
evaluated by equation (4). If the values of a(q) are plotted against (a-qp)
(figure 2), it can be seen that an excellent linear relationship exists. A value
for B is determined by a least squares fit of the line a=p- (a-gy) to these data.
This procedure was applied to all the HIRS channels and the resulting values for
B are tabulated in table I.

Henceforth transmittances which have been calculated by applying equation (2)

to transmittances at qy=330 ppmv are referred to as ‘P-approximation’
transmittances.
Se RESULTS

In order to gain confidence as to how well the correction term simulates the
actual transmittances, the following differences for HIRS 6, as an example,

TR, @ -T D, Q). TR, -TP(R,q) s T(p,@) -T(p,q) PO (5)
are plotted in figures 3a and 3b.

As the amount of co, increases the transmittance decreases. The greatest
sensitivity of the transmission function occurs in the region where the weighting
function is greatest. Generally the P-approximation tends to underestimate the
transmittance below the region where the weighting function peaks and
overestimate in the regions above. This pattern is repeated for both the

1figures corresponding to figures 1 to 4 for other HIRS channels may be
found in Turner, 1993.
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longwave and shortwave temperature sounding channels. Overall the B-
approximation works very well. The maximum deviation is of order *0.004 (HIRS
1 at 6 mb) at a mixing ratio difference of 50 ppmv.

In a physical retrieval system, information about the atmosphere is inferred
by comparing observations to TOA calculations from an assumed atmospheric state.
Consequently, the best method of determining how well the P-approximation would
perform in such a scheme is by comparing the B and LBL radiances.

For the purposes of this comparison the surface (clear sky) or cloud (100%
coverage) is considered to be black. Only the differences between LBL and B-
approximation simulations at varying mixing ratios are considered. The effect
of a non-black surface (ie; non-unity emissivity, reflected downwelling and solar
terms) is ignored since it is small compared to the surface emission and the
atmospheric term. It is reasonable to assume that the error due to neglecting
this term is approximately equal in the two simulations.

The LBL and P-approximation forms of the TOA (equation 1) radiance are:

Pg —_— /
R (p,, q) =B (p,) T (p, @) - [ B(p") -i‘-‘dpp—'q’-dp’
0

1+B-(g-qp) (6)

‘dp/

) Ay Pa d%(p’.q,)

RP(p,, Q) =B (D) T (P, ) %~ [ B(R): =

o P

Table I lists the percentage differences between LBL clear-sky radiances at

330 ppmv and 360 ppmv of CO,, "A", and the differences between the LBL and

B-approximation radiances at 360 ppmv, "B".
R.LBL _p LBL RLBL_RSB

A=100- —360 330 B=100-—269 360

LBL LBL
R360 R360

(7)

'Examination of column "A" shows that as expected the effect of CO, mixing
ratio changes in window (HIRS 8, 18 and 19), water vapour (HIRS 10, 11 and 12),
and ozone channels is negligible. The effect of CO, changes in the lower
shortwave temperature sounding channels (13 and 14) is also small due to the
dominance of N,O absorption over CO, absorption in these channels.

The fifth column in the table is a measure of the performance of the
B-approximation in accounting for CO, changes. The overall performance of the
B-approximation is better than 90% for the longwave stratospheric temperature
sounding channels and better than 97% for the longwave tropospheric channels.
Channel 3 which straddles the tropopause performs poorly but the sensitivity to
changing CO, is negligible, thus it is not important. In the shortwave
temperature sounding channels the performance is better than 82%.

Channel 15 is an oddity. This channel is the second most sensitive to CO,
changes. The B-approximation performs at 88%, but the difference between the LBL
and the P simulations is an order greater than any other channel. This might be
due to a transition from N,0 to CO, dominance in the mid-troposphere. The final

column tabulates the absolute difference in brightness temperature (a more
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commonly used unit) between 330 ppmv and 360 ppmv. These values represent
systematic errors in current models for TOA brightness temperature that assume
a constant CO, mixing ratio of 330 ppmv. Although the errors are generally
small, those which are greater than approximately .25 K may have an impact on
data assimilation routines (C. Chouinard, 1992).

Table I illustrates the performance of the P-approximation for TOA radiances
in clear sky conditions, however the effects of varying CO, on TOA radiances from
clouds must also be considered. Figure 4 plots a comparison between the LBL and
the P-approximation HIRS 6 TOA radiances for various mixing ratios of Co, as a
function of the cloud top pressure.

As with surface results (table I), examination of similar graphs of the TOA
radiance from clouds for the other HIRS channels show that the temperature
sounding channels are the channels with significant sensitivity to CO, changes,
with the same exceptions (HIRS 3, 13, 14).

The sensitivity to CO, changes varies with height in all channels. The
regions with the greatest sensitivity coincide with the regions that contribute
the most to the TOA signal (compare with the weighting functions). With the
exception of channels 1, 2, 3 and 17 all the channels show a decrease in their
sensitivity to CO, changes as the cloud top pressure decreases to about 200 mb.

Channels 1, 2 and 17 have near vertical structure in the troposphere due to
the dominance of the atmospheric emission term. These are the stratospheric
temperature sounding channels. Consequently the ground and all ‘realistic’
clouds are invisible to the satellite due to the opaqueness of the atmosphere at
these wavelengths.

In general the P-approximation curves parallel the LBL simulations quite well.
Deviatigns are generally less than 0.1 to 0.2% and at worse less than half a
percent. Although the differences from the LBL model are negligible, the pB-
approach for the shortwave channels that have a fair amount of N,O0 contamination
(HIRS 13, 14 and 15 (figure 5)) does not parallel the LBL simulation as well.
The B-simulation improves with height lending some credence to the idea that N,0
dominates over CO, in the lower troposphere.

Without exception all the channels that can sense the surface or clouds show
a decrease in CO, change sensitivity with height illustrating that a correction
to changing CO, cannot be applied equally to clear and cloudy atmospheres.
Frequently, correction terms (or biases) for retrievals are statistically derived
from clear sky (surface) measurements and are then applied equally to
observations from clouds. This practise is not a good one. In the case of the
aforementioned CO, corrections, it is certainly not the case since the errors in
ignoring CO, clearly change with cloud top pressure. They decrease with height
in regions where ’‘real’ clouds exist.

Finally, simulations were run in order to determine if B has a significant
dependence on the temperature profile and zenith angle, details of which can be
found in Turner (1993). LBL simulations were carried out using a mid-latitude

summer temperature profile and a sub-arctic winter temperature profile. The LBL
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TOA radiance results were compared to the reference LBL radiances corrected for
g using equation (2) and the table I values of B, and it was found that these
values of P were applicable with only a slight loss of accuracy. A negligible
impact on the accuracy was found after a similar comparison was done assuming an

extreme satellite zenith angle of 52°.

4. CONCLUSIONS

A simple method has been developed to correct for systematic errors in
calculated HIRS radiances generated by changes in CO, mixing ratios. The method
consists of multiplying the mean transmittance corrected for temperature and
zenith angle by an exponent which is a linear function of the deviation of the
co, mixing ratio from a reference value, ie:

P . (9

where T is the transmittance evaluated for an arbitrary temperature profile and
zenith angle assuming 330 ppmv of CO,. One value of B can be used for each
channel regardless of temperature or zenith angle. The values may differ
slightly from satellite to satellite.

The term 1+B-(q-q0) should not be confused with a current method of
correcting transmittances, which is known as the y-correction. The y-correction
is an empirical coefficient derived from satellite-radiosonde collocation
statistics that is applied to the transmittances in an analogous manner, ie T =
7. The term ﬁ-(q—qo) corrects for an identified systematic error, whereas the
y-correction is a statistical correction for unidentified systematic and random
errors.

1t 'should be noted that there are two caveats regarding this method. First
the ‘errors in the application of B-(q-qo) increase with increasing (g-qg). thus
it would be ideal to propagate g, with time. Currently, the reference CO, mixing
ratio is 330 ppmv, a value that was applicable in the mid-seventies. Although
the p-approximation does not produce large errors at the current mixing ratio of
360 ppmv, it will not be long before the errors are.unacceptable. It would be
prudent to recalculate the basic NESDIS transmittance model coefficients at a new
reference mixing ratio, say 380 ppmv.

The values of P defined by this paper were calculated using more recent
spectral line data than the original coefficients were. In using a different set
of spectral data the mean transmissions calculated in this study will not
necessarily equate to the NESDIS transmittances, thus the values of B implicitly
assumes that a constant systematic error accounting for the differences in the
spectral line data will occur that will be removed by the usual calculation of
NESDIS correction biases. This problem will vanish upon recalculating all the
NESDIS transmittance coefficients.
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HIRS p ppmv’" A B 1-|B/A| c
1| 1.243x1073 .648 o711 .890 .362
2 | 1.705x1073 .476 - 083 .931 .240
3| 1.571x1073 - .056 .063 .125 - .027
4| 1.630x1073 -1.516 -<.001 | > .999 - .785
5 | 1.628x1073 -1.909 - .057 .970 -1.080
6 | 1.870x1073 w1071 - .036 .981 -1.146
7| 1.818x1073 -1.023 - .003 .997 - .686
8 | 3.010x1073 - .003 <.001 | > .999 - .002
9 | 2.863x1073 - 031 <.001 | > .999 - .017
10 | 3.238x107° - .006 <.001 .981 e o O3
11 | 6.175x1073 - .026 <.001 .992 - .010
12 | 1.105x1077 -<.001 <.001 .999 -<.001
13 | 1.202x107° - .025 - .004 .840 - .006
14 | 3.247x107 - .105 - .019 .819 - 023
15 | 7.240x107% -2.566 .301 .883 - . 479
16 | 1.730x1073 -3.459 - .064 .981 - .540
17 | 1.584x1073 2.520 .099 .961 .429
g 18 | 1.960x107* - .023 .002 .897 L%, 007
19 | 2.108x107% - .008 <.001 .956 - .002

TABLE I: The table lists the values of B for each channel and the following
relative TOA clear sky radiance differences from a black surface located at
1000 mb.

RLEL _p LEL RLEL _pB
A=100- 2360 LBLaao . B=100- 2360 LBL360
360 Riso

An U.S. standard atmosphere, a surface temperature of 288 K and a zenith angle
of 0° is assumed. The fifth column is a measure of the performance of the
B-approximation in accounting for CO, changes. "c" is the TOA brightness
temperature difference in K between 330 and 360 ppmv. The long and shortwave

temperature sounding channels are highlighted in bold type.
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FIGURES

Fig 1: Plotted are the values a’ as a function of pressure for HIRS 6 assuming
CO, mixing ratios ranging from 320 ppmv to 380 ppmv. The mixing ratio
values can be identified using the legend in figure 3a. The vertical lines
represent the weighted mean of the a’ curves. A vertical path through an
U.S. standard atmosphere is assumed. The thick solid line is the HIRS 6
weighting function.

Fig 2: The weighted mean of each a’ for each value of g used in figure 1 (solid
circles) is plotted against its corresponding value of d-qp. The line
represents the curve a(q)=b(q—qu), where B (applicable to HIRS 6) is
determined by a least squares fit to these data.

Fig 3: Figure (a) depicts the HIRS 6 mean transmittance differences between,

A=T"(p,q) -7 (p,q,), and B=7P(p,q) -TP(p,q,)
The solid lines, A, are paired with the legend defined lines, B, one pair
for each CO, mixing ratio. Figure (b) shows the difference between the
curves in figure (a), ie;
A=T5(p,q) -T?(p,q)
The legend in figure (3a) applies.

Fig 4: Figure (a) illustrates two sets of differences defined as;
RP(p,.q) -RP(p,,q,) R™(p_,q) ~R¥L(p_,q,)
RP(p,,q) BAp, . @)

as, a function of cloud top pressure for HIRS 6. Clouds are assumed to be

A=100- . B=100-

black. Curves A, defined by the legend in figure (5b), are paired with
'solid lines defined by B. Figure (b) depicts the difference between the
curves in (a), ie;
 RBp.,qh-RP (p,, P

R B0, q)

The U.S. standard atmosphere and a zenith angle of 0° is assumed.

100

Fig 5: Comparisons for HIRS 15 in the same format as in figure (5).
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