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ABSTRACT

Inversion of cloudy TOVS radiances demands that account be taken of solar and atmospheric
infrared radiation reflected from clouds.

In part 1 a simple reflection model based on two stream scattering calculations and it’s
application in a non-linear retrieval scheme is described. The interpretation of the retrieved
reflectivity at 3.7um (HIRS channel 19) in terms of a cloud drop effective radius is made possible
by using a discrete ordinates scattering program to give the expected bidirectional reflectivity.
A more direct and physically reasonable approach to modelling HIRS cloud radiative properties
is described.

In part 2 AVHRR data is used to demonstrate that the effect of cloud shape on the observed
reflectance is very significant. This precludes detailed inference of effective radius. However,
results suggest that a large area average measurement such as that made by the HIRS instrument
significantly removes the geometrically induced noise.

1. HIRS REFLECTANCE MODEL

The trend towards use and NWP assimilation of measured radiances in their raw, uncor-
rected, form has meant that greater attention has focussed on accurate forward modelling of
the radiative transfer equation (RTE). More explicit use of the radiance data means that more
explicit r’nodelling of them is appropriate. This paper is concerned with modelling the part of the
RTE concerned with clouds, particularly their spectral emissivity, reflectivity and transmission.
It documents recent progress made in the UKMO in this particular modelling aspect.

Turner et al. (1991) reminded the TOVS community of the fact that clouds, even fully
opaque ones, did not emit as black bodies, especially in the shortwave (~ 4um) band (channels
13-19). They used results of Yamamoto (1970) and Hunt (1973) to estimate opaque water cloud
spectral reflectivity and showed that inclusion of reflected solar and downwelling atmospheric
radiation in the RTE was important. Inclusion of such terms may have some relevance to cloud-
clearing methods but is more obviously important when use is made of raw, ‘cloud-contaminated’
measurements.

This part of the paper summarises our attempts to formulate a model of cloud reflectivity
for the HIRS instrument' and demonstrates the retrieval of cloud drop size information.

The major limitations of using Yamamotos’ work are that it was restricted to one type of
cloud and didn’t cover the shortwave region beyond 5 um. For HIRS we need information in
the 4.3 um region and on the behaviour with different cloud types. To this end, we performed
Mie and two stream calculations? for a variety of cloud types and solar angles and examined
the spectral emission and reflection functions. Examples are given in WB. We arrived at the
following conclusions:

' Details on this section can be found in Watts and Baran (1992), hereafter WB.

*two stream calculations give hemispherically averaged radiative properties which depend only on solar angle,
drop size distribution and optical depth, see, for example, Meador and Weaver (1980). Kirchoffs’ Law applies:
R+T+E=1 where R is reflectivity, T is transmittance and E is emissivity.
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e For most water clouds we can assume negligible transmission and significant reflection at
short wavelengths.

e The basic reflectivity pattern of peaks and troughs is fixed by the refractive index of water.

e The basic pattern appears to grow or shrink depending on the drop size (effective radius)
and solar zenith angle.

This led us to a simple HIRS cloud radiative model:
The channel i reflectance is given by

R, = pR!

where R is the ‘basic pattern’ channel i reflectance and p is a reflectivity parameter. We assume
here that all clouds are opaque and so the emissivity is given by ¢, = 1 — R,. The values for R
are given in table 1.

Table 1. HIRS basic pattern reflectances
HIRS channel i 2 3 4 5 6 7 8 91 10
"% |1.7|16|15]|1.5[15(1.3|13] 1.0| 3.0 1.1

HIRS channel | 11 | 12| 13| 14| 15| 16 | 17 18 19
R % | 3.6 |2.8|3.6|38|45][53]9.3]|11.9]13.8

This reflectance parameterisation was incorporated into the TOVS fast forward and gradient
models RTTOV, Eyre (1991). In WB we used this to establish the effect of opaque water cloud
reflection on HIRS channel brightness temperatures, both the reflected solar and downwelling
atmospheric radiation terms. Only the 4.3um band channels have significant solar effects and
only HIRS 18 and 19 have a large (~ 2K ) emission deficit.

We added the reflectance parameter to the UKMO non-linear TOVS inversion scheme, Eyre
(1989a and b), and performed simultaneous retrievals of cloud fractional cover, top pressure and
p parameter. HIRS 19 was included in the measurements used. Detailed results of this for a
case study pass are given in WB but here we show only the retrieved cloud top pressure, figure
1, andsthe HIRS 19 % reflectivity R3.7, figure 2. Correspondence between areas of high cloud-
low reflectivity, medium cloud-medium reflectivity and low cloud-high reflectivity are apparant.
This is consistant with the inverse drop size/ reflectance relationship®. It was shown in WB
that the retrieved ®3 - had strong angular dependence which precluded inversion of it to a drop
effective radius value. The hemispherical fluxes from the two stream methods were inadequate
and more detailed scattering calculations would a) enable the drop size inversion and b) provide
a more reliable HIRS cloud radiative model.

1.2 Bidirectional Radiative properties

The bidirectional reflection, transmission and emission of plane parallel clouds can be ob-
tained using the general purpose scattering program DISORT (Stamnes et al. 1988). Using 48
stream calculations for an opaque cloud, we obtained a table of R3.7(05015 Osats @rets Re) for solar
zenith angles, 6,y = 0 — 90°, satellite (view) zenith, 8, = 0 — 60°, relative azimuth angles,
¢, = 0 —180° and effective radii, R, = 1 —23um. This table can be interrogated for R; 7 given
the geometric angles and an effective radius. An inverse routine returns the drop radius given
the geometry and a value of R.7. Figure 3 shows R3 7 as a function of view zenith and relative
azimuth for 6,,; = 50° and R, = Tum. Forward and backscattering regimes are clearly visible

3The high cloud is undoubtedly ice phase and not spectrally modelled appropriately by the water cloud R;.
However, by omitting channel 18 from the retrieval, we have only channel 19 with high sensitivity to solar
reflection and hence the retrieved reflectivity in channel 19 is probably still accurate; the implied reflectivities in
other channels could well be very wrong!
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Figure 1. Retrieved cloud top pressure (mb). Figure 2. Retrieved 3.7 (%)
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%Reflection (3.7 um)
%Reflection (3.7 um)

Figure 3. R5% as a function of 8,4 and ¢,. Figure 4. R as a function of 6,, and R..

when the instrument is not viewing at nadir. Reflectance is clearly dependent on the viewing
angle - more energy is scattered at low zenith angles regardless of whether the direction is more

‘forward’ or ‘backward’.

Figure 4 shows the increase in reflectivity as f,, increases - the scattering is more efficient
for more glancing angles since the beam is nearer the cloud surface for longer allowing more
photons to escape. This is offset by a cos 8, factor which represents the energy available per
unit area at a particular beam angle. Clearly, also, there is a strong dependency on R, at all

solar angles.
Using the inverse look-up table we have inferred the drop effective radius from the TOVS

retrieved R3.7. This is shown in figure 5. Although we have no independent measurements to
support these values we may at least note the following:

* R values range from 2um for the small cumulus areas to 28um for the cirrus (the re-
flectance tables are extrapolated for values of R. above 23um). This is broadly in agree-

ment with what may be expected.

e No substantial angular dependence is seen in the values - the use of the geometric look-up
tables appears to be successful.

1.3 Sources of error

e Errors in the retrieved cloud parameters will cause corresponding errors in the cloud re-
flectivity and R.. A simulation of this effect is possible (see, for example, Eyre 1989a).
Cloud pressure error will tend to be less important since HIRS 19 is a fairly clean window
and therefore not unduly affected by the height assignment. Cloud fraction is important
though, and errors in it are largest for fields of view with low cloud cover. A further
problem, with partially cloudy soundings is that reflection from the underlying surface
becomes a factor, although (for realistic land surface reflectivities (< 5%@3.7um)) serious

_errors in cloud reflectivity do not occur unless the cloud fraction is as low as 20%. Clearly,
retrieved R, values will only be reliable for the cloudier soundings.

e The cloud may not be truly opaque - almost certainly true for most cirrus. We hope
to address this problem by including optical depth as a further cloud parameter in the

retrieval, see below.
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e The base scattering calculations may be in error or unrepresentative. For example, the
drop size distribution may not represent what is actually present or the real cloud may
not be homogeneous in the vertical. These possibilities really question the definition of an
effective radius.

e The cloud may not be truly plane parallel as assumed in the scattering calculations, i.e. it
may have significant vertical structure. This question is addressed in part 2 of this paper.

e Errors in atmospheric transmittance modelling, particularly in HIRS 19, will lead to er-
roneous reflectivity. As part of a simultaneous retrieval of temperature and humidity the
HIRS 19 transmittance is probably as well modelled as possible and, anyway, the channel
is quite a good window. With a typical above cloud absorption of 0.15 and an error in this
of 10% we have a transmittance error of ~ 1.7%. This will give aproximately the same
percentage errors in both R3; and R.: the effect is small.

1.4 An improved model

The two-stage process described above - retrieval of a reflectivity parameter p followed by
the inversion of R4 - to R, - is clumsy and does not model the HIRS spectral cloud properties
to the best of our knowledge. For example, to account for transmitting clouds we would have to
introduce a transmittance parameter and somehow relate it to p. We therefore plan to replace p
with R, both in RTTOV and in the non-linear inversion scheme. R, will be connected to cloud
reflectivity via the geometric look-up tables. At the same time, we will extend the look-up tables
to include optical depth 7 and will experiment to see if the HIRS data can discrimate between
R, and 7. It is likely that HIRS 20 will be useful here since reflectance at 0.7um is insensitive
to drop size (Arking and Childs 1985).

The reflectance properties of ice clouds are substantially different to that of water clouds;
generally lower reflectance due to lower water contants and larger drop size, but also with
characteristically high side scatter. There appears to be no conveniant characteriser analogous
to R, for ice clouds although size distibutions for several cirrus types have been measured and
could perhaps be used in some crude classification. One important aspect of this is the need
to recognise (from the data) the phase of the cloud under observation, so that the appropriate
reflectance characteristics can be used.

2. GEOMETRICAL CONSIDERATIONS

In part 1 we showed that given a flat opaque cloud it was possible, with a knowledge of the
sun-sensor geometry, to estimate the drop effective radius R, from measurements of reflected
solar radiation at 3.7um. Cursory examination of AVHRR imagery, however, will convince most
that the majority of clouds are not flat by any reasonable definition' and in Part 1 we showed
that the reflection properties are highly angle dependent. One effect of non-flatness in a cloud is
to locally change the sun-sensor geometry and thus the reflectivity. The question we attempt to
answer here is whether this precludes the estimation of R, from 3.7um measurements. We do
this using AVHRR data to estimate the cloud shape with aresolution of 1-2 Km in the horizontal.
From this the local geometry is calculated and the expected reflectivity obtained. In comparing
this with the observed reflectivity we are assuming that the effect of geometry on a horizontal
scale of thousands of metres and greater dominates the effect of that on smaller scales. Primary
justification for this comes from realising the penetration depth of 3.7um radiation is typically
hundreds of metres so that structure on a scale less than this will tend to be unimportant. Also,

'The definition, however, depends on the application. For example, representation by an equivalant flat cloud
is adequate, in most cases, for modelling the emitted thermal radiation (Watts, 1990).
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since Ny - is relatively low (~ 10%), inter-cloud reflections should be negligible. The only real
justification however, comes from the agreement between calculated and observed reflectances.

We demonstrate that for interpretation of high spatial resolution reflected 3.7 ym radiance
in terms solely of a cloud drop effective radius, a flat cloud model or assumption is far from
generally valid. An appreciable amount of the variance in the observed R ; field is explained
solely in terms of the broad scale (> 1 Km in the horizontal) geometry.

The question of whether the averaging characteristic of a low resolution measurement reval-
idates the use of a flat cloud model is addressed.

Finally, a method which estimates the local effective radius and temperature lapse rate for
a group of high resolution pixels is suggested.

2.2 Local cloud geometry

The kernal of this study is representation of the physical geometry of the cloud field and
it’s consequent effect on the source-sensor geometry. This in turn can be used to examine the
effect on the expected reflectance for a given drop effective radius. The basic assumptions of
the first step are that the 11 pym measurements of AVHRR channel 4 can be interpreted as the
physical temperature of the cloud (or at least, the physical temperature at a constant depth
in the cloud) and that the atmospheric lapse rate is at least locally constant. Calculations
show that for opaque clouds the emissivity at 11um rarely falls below 98% even for extreme
view angles. Also, the atmospheric transmittance at 11 pm is sufficiently high that differences
between measured brightness temperature and physical surface temperature rarely exceed 1K.
Since this difference is primarily due to water vapour, it is less still when only the atmosphere
above the cloud level is of interest. Consequently we expect the measured brightness temperature
at 11 pm to be a fair measure of the temperature of the cloud. In conjunction with an assumed
lapse rate T, the temperature can be interpreted as a height. It is a relative height since we do
not consider the surface temperature, but for the purpose of establishing the cloud geometry,
relative height is entirely sufficient. Further, because temperature differences are used, errors
implicit in the above assumptions (atmospheric attenuation and cloud emissivity at 11pm) tend
to cancel.

The smethod will, of course, seriously break down at cloud edges or where the cloud is
significantly transmitting. However, these areas can be identified (Saunders et al., 1986) and do
not represent a serious limitation.

The second step is to calculate the local sun-sensor geometry from the gradient of the height
field. The details of this are given in the Appendix. _

With a suitable choice of R, it is now possible to use the look-up tables to estimate the
expected local R3.7.

2.3 Observed reflectance

A

To check the validity of the above method we need to compare the predicted reflectivity to
that observed. This latter we obtain by the following equation:

Ry: — B3 7(BT)1um)Tes.7
215 ;

Ry =
Where R - is the measured channel 3 radiance, By (BT, ;) is the Planck function at 3.7um
of the 11yum brightness temperature, 7 is the approximate channel 3 transmittance to space, I ;
is the TOA 3.7um solar irradiance and €37 is the geometry dependent 3.7um emissivity. The
second term in the numerator is the thermally emitted radiance. 737 we take to be a simple
function of pressure and accept there will be some small loss of accuracy in not modelling it
correctly. ;- is obtained from the scattering calculations and so the ‘observed’ R3 . actually
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Figure 6. Wave cloud case: shading by value of R’ (left plot) and R (right plot)
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Figure 7. Wave cloud case: Cross-section of R’ and RL.
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2.4 Results: 2 cases

We restrict the presentation of results to two cases: one of wave clouds of considerable
amplitude and horizontal scale and one of an area of stratus. é

Figure 6 shows shaded isometric plots of the cloud height field for the wave cloud case;
shading in the left plot represents R3” calculated from the above equation, shading in the right
plot represents values from the look-up tables assuming R, = 7um. The mean ¢, is about
185° (backscattering), 6., about 70° and 6, about 50°. The area shown is 70 x 70 pixels. The
lapse rate I' required for a reasonable fit was perhaps rather low at 4 KKm™', however, it does
not necessarily represent the true atmospheric lapse rate.

All the predominant features of the observed reflectance are present to greater or lesser
degree in the calculated field; significant variance, in fact, can be said to be due to geometrical
effects. The area in the bottom right corner which shows as dark in the observed and light in
the calculated is the edge of a band of cirrus; the R, of Tum is not appropriate here. Figure 7
is a cross-section of figure 6 25 pixels up from the bottom. This clearly emphasises that a large
proportion of the variation in R5", perhaps 80%, is explained by the geometry. Also seen is
that the calculated values are too low on the anti-sun (RH) side of cloud masses.

The second case is for a very flat stratus area near the AVHRR scan centre and is shown, as
for the wave case, in figures & and 9. ¢,,; is again ~ 185°, 8., ~ 60°, 6., ~ 5°, T = 6K Km™'

"This is necessary to keep reflectivity as the variable of interest - we could have avoided it by comparing
radiances, however, it in no way invalidates the results.
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Figure 8. Stratus cloud case: shading by value of R (left plot) and 9?';"11’ (right plot)
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Figure 9. Stratus cloud case: Cross-section of R3% and Reode,

and R, = 12um. Again, the calculated field has the general appearance of the observed field
and the cross-section shows very good agreement with peaks and troughs in exactly the same
position. The amplitude of the variation in the calculated field is significantly lower than that
in the observed; this is probably due to the finite differencing for the gradient field tending to
smooth the real gradient. This time, with a very flat cloud the geometrically caused variance is
less - 30-40% of the total reflectance.

These two extreme cases have shown that much of the observed variance in AVHRR channel
3 reflectance from water clouds can be attributed to the geometry of the cloud top. It can hardly
be said to be a comprehensive study as there is such a diversity of cloud types and situations to
make this a huge task. We can find areas of cloud where the R3” appears to bear only passing
resemblence to the calculated values. Sometimes this will be due to the cloud being thin, broken
or of ice or mixed phase but sometimes any plausible explanation is elusive.

Further, although the general features of the reflectance pattern are reproduced the accuracy
to which this is done is not sufficient to enable us to significantly remove geometrical effects from
the signal. This appears, at least in part, to be due to the approximate nature of our estimation
of the local gradient: rapidly changing gradients are inevitably smoothed.

2.5 Spatial averaging

Our limited success, however, does mean we can have confidence in estimating the effect of
geometry on drop size retrieval. In particular, we are interested in the averaging effect of a large
footprint sounder such as HIRS/2. Using the computed reflectances for the wave cloud case, we
can invert a reflectance to obtain an R, value. Of course, using the local geometry we obtain the
R, assumed in the computation. However, using the simple flat cloud geometry we get an R,
which is in error. We have done this here for a single AVHRR pixel, marked * on figure 6, and
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to be constant. The suggested technique is to minimise the function:

n

F(T, R.) = 3 (R3%, - REH(T, Be))?

wlhere T' determines the geometry to use in the look-up table through the height field. It is
suspected that the two parameters can be estimated independently since R. will tend to shift
the mean calculated reflectance whilst I' will primarily affect its variance. However, we have
had little success with this so far, the minimum tends to to lie at very large drops and for very
high lapse rates - i.e. a reflectance field with no variation. We suspect this is due to aliasing of
the peaks and troughs such that a bland field better fits the observed varying field.
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APPENDIX: GEOMETRY

The geometric inputs to the discrete ordinates scattering radiative transfer package (DIS-
ORT) are the source (Sun) zenith, view (satellite) zenith and relative (Sun-satellite) azimuth
angles. In order to calculate these values for a sloping cloud facet, it is conveniant to work with
a set of orthonormal vectors defining the cloud plane and unit vectors defining the solar and
satellite directions. The angles then result from simple vector dot products.

Unit vector components from zenith and azimuth angles (6 and ¢ respectively) are given by
the following relations:

s. = cosf, (1)
s, = cos(¢)sinf (2)

and
s, = sin(¢) sin 6. (3)

The inverse of the above relations are:
§ = cos™'(s:) (4)

6 = sin~'(s,/sin@) = cos™'(s,/sinb) (5)

A.1 Orthonormal vectors of the cloud surface

We have a cloud temperature field T'(z,y), where, conventionally, z is taken as the across
track and y as the along track directions respectively. The (relative) height field is then H(z, y)=
T(z,y)/L, where L is the, at least locally, constant lapse rate in K Km™ '. The gradients of the
height field dH /dz and dH /dy can be found by differencing pixels in the appropriate directions.
That is,

dH/dz = H, = (H(z + 1,y) - H(z - 1,y))/2Ip

where Ip is the interpixel distance and, in the case of AVHRR is equal to 1.1/ cos(fsq). Similarly
for H,;.

. We now wish to establish a set of orthonormal vectors cy, ¢, ¢3 in the plane of the cloud as
defined by H. We can somewhat arbitrarily let the first vector be that which projected onto the
z — y plane lies in the z direction, i.e.

¢ = [1a07H.1']/(1+H~")2 (6)

say. ]
A second vector, not orthogonal but also in the plane of the cloud, is el

¢ =[1,0,H,)/(1+H,)* (7)

The vector c;, orthonormal to ¢; and ¢, is perpendicular to the cloud plane and is found
through the relations cj.c; = cy.¢’ = 0 and c3.c3 = 1. This leads to

C3%= [—H‘,», _H.ue 1]/(1 <5 Hyl oy H;f)]/-) (8)

By similar method we can establish ¢, the vector orthonormal to ¢; and ¢; (and which
therefore is in the cloud plane). Here we have, cy.c3 = 0, c2.c; =0 and c¢y.c; = 1, and we find

¢y = [-H,,(1+ H?)/H,,1]/(1+ H2+(1+ H"f)/H!‘;’)l/z (9)

552




WATTS. P.D. CLOUD MICROPHYSICAL PARAMETERS FROM TOVS: A PRACTICAL ...

BT~ &
21.0= ™ { ‘
o/ -
19.0 - ’
17.0 > 4 Q2 '
15.0— ’
13.0— i

1.0 o

Effective radius
\

9.0 )
7.0— '
5.0 = 1

3.0—

1.0 I 1
0 10 20 30 40 50 60 70
Solar zenith angle

Figure 10. Example error in R, from flat cloud assumption for 1.1 Km (AVHRR) pixel.
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Figure 11. Example error in R, from flat cloud assumption for 17 x 17 Km (‘HIRS’) pixel.

for a 17 x 17 pixel average, around the *, to represent the HIRS footprint. We have used a range
of true R, values 1 — 23um and a range of solar zenith angles 0 — 70°. The errors resulting are
plotted in figures 10 and 11 for the 1 x 1 and 16 x 16 pixel cases respectively. They generally
show the same features; larger errors result when the drop size is smaller and the solar angle
is larger. This is because most rapid variation in the reflectivity function occurs in these cases
(see figures 3,4). It is also clear that the effect of the area averaging of the ‘HIRS’ footprint is
to significantly reduce the error in the flat cloud estimation of R. and allow higher solar zenith
angles to be used.

Again, these results are somewhat specific to the particular case chosen although the general
conclusion is likely to remain true for any cloud. More thorough employment of the above
technique could establish acceptable limits on the use of HIRS data for R. estimation.

2.6 Combined lapse rate-drop size estimation

An intriguing possibility exists of simultaneously estimating the local lapse rate and cloud
drop radius using a colloction of n AVHRR pixels close enough that the two variables are likely
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Figure A.1. Cloud, solar and satellite geometry

A.2 Angles relative to the cloud plane

The task remaining then, is to find the zenith and azimuth angles subtended by solar and
satellite vectors. Figure A.1 shows the cloud plane, the vectors ¢, ¢y, c3 and the solar and
satellite direction vectors denoted s and st. It also shows the zenith angles 8, and 6.,. Clearly,

s.cy=|s|.|c3|.cosb, (10)
so that
g, = cos™'(s.c3) (11)
and similarly,
0. = cos™'(st.cs) (12)

_.Since, for this application, we are interested in the relative azimuth angle, ¢,,;, subtended
by the two vectors it is convenient to establish an equation for this variable. Their projections
ontd the cloud plane (i.e. onto ¢;,¢2) s and st' are given by

st = [sty, sty] = [st.c, st.ca] (13)
s = [s1,82] = [s.c1, 8.¢0] (14)

Now,
st'.s" =] st | .| 5| .cos(drer) (15)

So that the relative azimuth is given by

by = cos” ' (sty.s) + sta.s2)/((st5 + sti)/ (s + sV (16)
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