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1, INTRODUCTION
The lack of sufficient quantitative knowledge of the Arctic surface radiation budget has been identified as an

obstacle to a better understanding of the arctic atmosphere-ice-ocean system within the global climate (WMO/
WCRP, 1992). The U.S. interagency Surface HEat Budget of the Arctic Ocean (SHEBA) (Moritz et al., 1993)
initiative identifies the documentation of the arctic surface radiation budget as one of its primary objectives. In
particular, ice-ocean modeling studies typically use components of the surface radiation budget derived from
rather crude parameterizations and climatologies. Data assimilation schemes designed to obtain statistics on
the ice thickness distribution, an important climate indicator, require an ice growth rate that depends on the
surface radiation balance. Climatological values of questionable quality are currently used to specify the sur-
face radiation budget. In most cases these values do not vary in space, and vary in time only at a very coarse
resolution. Even though long-term surface observations of radiative fluxes from Russian drifting stations
exist, their spatial coverage is very limited. In order to construct two-dimensional fields of surface radiative
fluxes, a satellite-based method is needed. In this paper we describe a method to derive downwelling long-
wave and shortwave fluxes in the Arctic from TOVS that employs a neural network to compute the relation-
ship between HIRS and MSU brightness temperatures and radiative fluxes measured at the surface. Results
and comparisons with surface observations from two field experiments, (LeadEx) and (CEAREX) are pre-
sented.

Z BACKGROUND
2.1 radiation from : physical vs, empirical m

One approach to obtaining radiative fluxes at the surface from satellites is to compute them from the vertical
temperature and humidity profiles, cloud conditions, and surface properties using a radiative transfer model.
Input variables for these computations are obtained from satellite radiances via algorithms and models. These
algorithms are usually variations on the following components: a) scene identification (clear/cloudy),
b) retrieval of surface radiative properties (témperature/reﬂectame). ¢) retrieval of column optical properties
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(atmospheric profile, cloud optical thickness, cloud height), and d) computation of downwelling surface radi-
ation or flux profiles. This approach may be called “physical” even though the inversion of satellite radiances
to obtain physical variables is commonly done using statistical techniques, and scene identification frequently
includes the use of empirically determined thresholds (Rossow et al., 1990; Kergomard et al., 1993; Sch-
weiger and Key, 1994).

An alternative approach is to relate observed top-of-the-atmosphere (TOA) radiances directly to simultaneous
ground measurements of downwelling radiation. This is usually achieved through multiple regression tech-
niques and is therefore often termed empirical or statistical (cf., Morcette and Deschamps, 1986; Schmetz,
1989). The physical approach appears more attractive because once the underlying physical principles are
identified, it offers the opportunity for further development of the individual components and allows for direct
comparison with variables calculated in an atmospheric model; e.g., a general circulation model (GCM). Such
a physical approach naturally requires that data for all the relevant variables are available and known within
defined accuracy limits. But this is the problem: in the Arctic, most of the relevant variables, such as cloud
fraction, cloud microphysical properties, surface albedo and temperature, are poorly validated or have beén
measured only for limited areas and short periods of time. We have previously used such a physical approach
to calculate surface radiative fluxes in the Arctic from the International Satellite Cloud Climatology Project
(ISCCP) data set (Schweiger and Key, 1994). Through sensitivity studies we found that few of the input vari-
ables are known well enough to achieve a desirable accuracy of 5 wmZ on a monthly time scale. Although
progress leading to an improved physical retrieval has been made, (Francis, 1994, 1995), substantial research
and thorough validation are required before reliable algorithms will be available that retrieve surface radiative
fluxes at all times and everywhere in the Arctic and that do not require substantial tuning. “Tuning” or making
unvalidated assumptions about variables is likely to introduce significant biases. We therefore believe that for
the near- to mid-term an empirical approach incorporating physically relevant satellite and surface observa-
tions is more promising for delivering accurate, unbiased surface radiation fluxes in the Arctic. In addition,
physical retrieval methods commonly impose a significant computational burden since both inverse and for-
ward radiative transfer calculations need to be performed. Performing these calculations for a multiyear data
set using radiative transfer models with the required degree of sophistication -- even for a limited area such as

the polar regions -- presents a formidable computational task.

3. METHODOLOGY
3.1 Whatis a neural net?

Artificial neural networks (ANN) were initially used by neuroscientists in an attempt to understand certain
functions of the brain. Over the past decade they have increasingly been applied to tasks involving the recog-
nition of complex patterns such as signal processing, optical character recognition, and even stock market
forecasting. Although a variety of ANN architectures has been created, the three-layer backpropagation net-

work is the most popular and is currently used in this research. Such networks consist of interconnected units
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(nodes) that are organized in three layers: an input, an output, and a hidden layer (Figure 1). Information in a
neural network is processed by passing activation along connections between individual nodes. This is done

by calculating the activation A of node i as the weighted sum of the activations at the connected nodes N:

Ai v ](;winAn) M

where w;, is the weight for the connection between nodes i and n and f is the a nonlinear function called the

activation function. Frequently a sigmoid function is used

1
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As the network is presented with an input pattern, activation at the input nodes is propagated over the hidden
nodes resulting in a pattern at the output nodes. Initially the weights between individual nodes are random and
no information is contained in the network. Adjusting the weights w;,for connections between nodes is called
the “learning” process. An ANN can be viewed as a vector function O=F(I), where O is the vector of output
unit activities and I is the input unit vector. In a backpropagation network, “learning” is achieved simply by
finding the weights w;, so as to minimize the difference between a presented training pattern and O. This
learning cycle involves the repetitive simultaneous presentation of matching input and output patterns while
the weights are adjusted using a gradient descent search. Thus a neural network can also be viewed as a non-
linear numerical optimization procedure. Neural networks are very attractive for some optimization problems

for the following reasons:

* They are suitable for applications that are not easily described analytically, and they can theoretically
determine any computable function.

*  Except for training patterns no additional information (e.g., partial derivatives) is needed.

» They are suitable for any type of pattern and data type, e.g., integer, real, or binary.

» They are good with the noisy data frequently encountered in geophysics.

* No assumptions about the statistical distribution of input variables are made.

*  After training they are extremely fast. They are easily implemented on parallel architectures.

3.2 Why do we expect this to work?

In order for a neural network to generalize over a particular problem rather than just “memorize” each indi-
vidual case, it has to be presented with the appropriate information to perform this task. Clearly, if there is no
general relationship between TOVS brightness temperatures and downwelling radiative fluxes at the surface,
the network will not be able to learn this task. Although one may approach this problem by providing an input
feature vector that contains many types of possibly related information, it is clearly desirable to first examine
the physical principles upon which the network is to operate: the TOVS was designed with the retrieval of
temperature and humidity profiles in mind, and several algorithms have been established to invert TOVS sen-
sor radiances. Recent improvements,in the 31 algorithms (Claud et al, 1989, Francis, 1994, 1995 have dem-

onstrated that TOVS radiances can be used to derive temperature and humidity profiles over more problematic
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polar surfaces. Francis (7995) further demonstrated that a combination of HIRS channels can be used to
obtain information on cloud-type and cloud-phase, and to estimate cloud physical thickness and cloud droplet
effective radius for certain types of clouds. Recent theory by Nakajima and King (1990), adapted and applied
to polar surfaces by Key and Stone (1995), has shown the capability‘of the AVHRR sensor (TOVS has almost
all AVHRR channels) to simultaneously retrieve cloud optical thickness and cloud effective droplet size. In
addition, statistical relationships between brightness temperatures and surface radiative fluxes can be
exploited by the network. For example, a statistical relationship exists between TOVS MSU channel 2 and
observed ice surface temperatures under cloudy skies during winter (Francis, 1994) and can be explained by

the “radiation boundary layer” theory of Overland and Guest (1991).

4. Data

Results are presented for two separate time periods and locations: the Coordinated Eastern ARctic Experi-
ment from October 1988 through December 1988 (CEAREX Drift group, 1990) and the LeadEx experiment
in the Beaufort Sea from March 24 1992 through April 4 1992 (LeadEx Group, 1993). The CEAREX time
period was for the most part during the polar night, so only measurements of downwelling longwave fluxes
are available. Measurements were made on a drifting ice camp and the on research vessel Polarbjoern using
an Eppley pyrgeometer. The data were corrected for dome temperature, and frost and snow were removed
manually. Data were averaged over 10 minute intervals. Measurements during the LeadEx period were also
made at a drifting ice camp. Short and longwave measurements were made and averaged at 1-hour intervals,
also using Eppley instruments. TOVS MSU and HIRS data for these periods were acquired from the National
Center of Atmospheric Research (NCAR) and NOAA NESDIS and collocated with the ground measure-
ments. HIRS and MSU brightness temperatures were computed and interpolated to "retrieval boxes" using the
corresponding steps of the 31 algorithm (Chedin et al., 1985). To allow a direct comparison with the physical
method of Francis (1995), only those data points that were not rejected by the 31 algorithm were used in this

study.

5. RESULTS

5.1 Results from CEAREX data set

A 3-layer backpropagation neural network was constructed to learn the relationship between HIRS and MSU
brightness temperatures and downwelling longwave radiation in the eastern Canadian Arctic for the period
October 1 through December 12, 1988. The input vector consisted of the 19 HIRS and 4 MSU brightness tem-
peratures. The sensbr scan angle was included as an additional input node. Observed downwelling longwave
fluxes measured at the ice camp and aboard the Polarbjorn were used as outputs. The network had a single
2-node intermediate layer. Only those TOVS and surface observation pairs that were within a 100 km radius
and within 1 hour from time of observation were selected, yielding a data set of 127 observation pairs. Train-
ing (83) and test (34) cases were randomly drawn without replacement from these observations. Upon train-

ing, the network was applied to the test data set. Figure 2 shows a comparison of observed and network-
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derived downwelling longwave fluxes for the test case. Figure 3 shows the same data as a time series along
with the results from the physical retrieval method devised by Francis (1995). Figures 2 and 3 demonstrate the
good agreement of network-derived fluxes with surface observations. It also demonstrates the superior perfor-
mance of this method to the physical retrieval method, albeit for a relatively small sample. The mean error for
the instantaneous observations in this experiment is 9.7 Wm2 with a standard deviation of 15.48 Wm™2. Even
though the mean error for the physical method is slightly smaller than the RADnet retrievals, the scatter in the
physical retrieval is larger than for RADnet retrievals. Further analysis is necessary to determine the reasons
for several outliers. Given the nature of this comparison (point vs. 100 km average) and the intrinsic error in
surface observations of radiation in the Arctic (e.g., frost covering of measurement dome), we consider these

results to be very encouraging

52 Results from the LEADEX experiment
Measurements in the LEADEX data set represent late spring conditions (March 24, 1992 through April 24,

1992) for a location in the Beaufort Sea. Measurements of downwelling long and shortwave radiation were
made at a stationary ice camp. TOVS brightness temperatures were paired with hourly averages of surface
observations using the same criteria as for the CEAREX data set. Randomly selected training and test data
sets consisted of 128 and 53 cases respectively. A backpropagation network, similar to the one used for the
CEAREX data set, was designed. In this experiment we included visible band (0.69 pm) scaled reflectances
from the HIRS sensor (channel 20) and the cosine of the solar zenith angle in the input layer. The output layer
consisted of surface observations of downwelling short and longwave radiation. A single 4-node intermediate
layer was selected. Figures 4a and 4b are scatterplots for network-computed and observed short and longwave
fluxes for the test case. Again the results are very encouraging. The mean error for longwave fluxes
is - 29 Wm2 with a standard deviation of 28 Wm™. Shortwave fluxes are overestimated by the network with
a mean error of 11 Wm 2 and a standard deviation of 48 Wm. A time series plot (Figure 5) of network-com-
puted and observed downwelling longwave fluxes shows that they track each other well except for some sig-
nificant deviations in the middle (t=30) and at the end (t=45) of the time series. Future research will address

these problems and identify the specific circumstances leading to these unexpected deviations.

TABLE 1. Retrieval Errors

Downwelling
Longwave Downwelling Shortwave
Training Test
Cases Cases RMS Mean RMS Mean
[T ————— A ——————— S e T i S R

CEAREX 83 34 18.0 9.7 NA NA
Physical Model (Cearex) NA 34 20.51 7.38 NA NA
LeadEx 128 53 28.34 29 49.54 11.27
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6. DISCUSSION

The results presented above are very encouraging and demonstrate the viability of the method. Clearly we are
now faced with the challenge to construct a network that perférms‘the retrievals over a the range of surface
and atmospheric conditions that will be encountered within the domain of its intended application. We are
currently in the process of assembling a much larger data set from multidecadal measurements of surface radi-
ative fluxes made on Russian drifting stations. In order to further improve retrieval results, it is also important
to refine the input feature vector. To accomplish this, we need to better understand how the network performs
its tasks and which information in the TOVS brightness temperatures is exploited. Analyzing the 112 connec-
tions in the presented neural network is obviously a difficult task. A case by case analysis and comparison
with physical retrieval methods is needed. Such an examination will help determine if the the network has
"learned” any general principles of radiative transfer or if it is simply exploiting statistical relationships
between brightness temperatures and downwelling radiative fluxes unique to this data set. This analysis may

also aid the further development of physical retrieval methods.
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Input Layer
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Angle (26 Units)

Intermediate (Hidden) Layer

Output Layer (Downwelling Short and Longwave Fluxes)

Figure 1. Schematic of network used in the LeadEx Experiment. (Note: Only connections
between inputs and first hidden units are shown).
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Figure 2. Comparison of downwelling longwave fluxes observed on the surface and computed from TOVS
radiances using RADnet (diamonds) and the physical retrieval method of Francis (1995) (triangles) for the
CEAREX data set.
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Figure 3. Time series of downwelling longwave fluxes observed at the CEAREX camp, computed by
RADnet and those derived using the radiative transfer approach of Francis (1995). The horizontal axis
represents measurements in time at irregular intervals from October 1, 1988 through December 11, 1988
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Figure 4. Scatterplots of downwelling longwave (a) and shortwave (b) fluxes observed at the LeadEx
camp and those computed by RADnet.
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Figure 5. Time series of downwelling longwave fluxes observed at the LeadEx camp (solid line), and
those computed by RADnet (dashed line and diamonds). The horizontal axis represents measurements in
time at irregular intervals from March 24, 1992 through April 21, 1992
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